题目内容
8.在边长为2的正三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.分析 根据平面向量数量积的定义进行转化求解即可.根据平面向量数量积的定义进行转化求解即可.
解答
解:$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$,
$\overrightarrow{BE}$=$\overrightarrow{AE}$-$\overrightarrow{AB}$=$\frac{2}{3}$$\overrightarrow{AC}$-$\overrightarrow{AB}$,
∴$\overrightarrow{AD}$•$\overrightarrow{BE}$=($\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$)($\frac{2}{3}$$\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{3}$${\overrightarrow{AC}}^{2}$-$\frac{1}{2}$${\overrightarrow{AB}}^{2}$-$\frac{1}{6}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{3}$×4-$\frac{1}{2}$×4-$\frac{1}{6}$×2×2×$\frac{1}{2}$=-1
故答案为:-1
点评 本题主要考查向量数量积的应用,根据向量共线的基本定义以及向量加法和加法的运算法则进行转化是解决本题的关键.
| A. | $[3,\frac{7}{2}]$ | B. | $[1,\frac{5}{4}]$ | C. | [63,71] | D. | [127,143] |
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |