题目内容

13.已知P,Q为动直线y=m(0<m<$\frac{{\sqrt{2}}}{2}$)与y=sinx和y=cosx在区间$[0,\frac{π}{2}]$上的左,右两个交点,P,Q在x轴上的投影分别为S,R.当矩形PQRS面积取得最大值时,点P的横坐标为x0,则(  )
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

分析 由题意知,P与Q关于直线$x=\frac{π}{4}$对称,设P(x,sinx),则矩形PQRS的面积为S(x)=($\frac{π}{2}$-2x)•sinx,(0<x<$\frac{π}{4}$),再利用导数求得矩形面积S(x)的最大值.

解答 解:由题意知,P与Q关于直线$x=\frac{π}{4}$对称,设P(x,sinx),则$Q(\frac{π}{2}-x,sinx)$,∴$S(x)=(\frac{π}{2}-2x)sinx(0<x<\frac{π}{4})$,
∴${S^'}(x)=-2sinx+(\frac{π}{2}-2x)cosx$,∴S=-4cosx-($\frac{π}{2}$-2x)sinx,
∵$0<x<\frac{π}{4}$,∴S''(x)<0,∴S′(x)在区间$(0,\frac{π}{4})$上单调递减,
且${S^'}(0)=\frac{π}{2}>0$,${S^'}(\frac{π}{4})=-\sqrt{2}<0$,
∴S′(x)在区间$(0,\frac{π}{4})$存在唯一零点,即为x0
令S′(x0)=0得:$2sin{x_0}=(\frac{π}{2}-2{x_0})cos{x_0}$,即$tan{x_0}=\frac{π}{4}-{x_0}$.
由不等式$tan{x_0}>{x_0}(0<{x_0}<\frac{π}{2})$得:$\frac{π}{4}-{x_0}>{x_0}$,解得:${x_0}<\frac{π}{8}$,
故选:A.

点评 考查三角函数的图象与性质、导数、零点、不等式等,考查数形结合思想、转化与化归思想,考查逻辑推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网