ÌâÄ¿ÄÚÈÝ
18£®ÎªÁËÏìÓ¦ÏÃÃÅÊÐÕþ¸®¡°µÍ̼Éú»î£¬ÂÌÉ«³öÐС±µÄºÅÕÙ£¬Ë¼Ã÷ÇøÎ¯ÎÄÃ÷°ìÂÊÏÈÈ«Êз¢Æð¡°ÉÙ¿ªÒ»Ìì³µ£¬ºÇ»¤ÏÃÃÅÀ¶¡±ÂÌÉ«³öÐл£¬¡°´Ó½ñÌ쿪ʼ£¬´ÓÎÒ×öÆð£¬Á¦ÕùÿÖÜÖÁÉÙÒ»Ìì²»¿ª³µ£¬ÉÏϰà»ò¹«Îñ»î¶¯´øÍ·Ñ¡Ôñ²½ÐС¢Æï³µ»ò³Ë×ø¹«½»³µ£¬¹ÄÀøÆ´³µ¡¡±ï¬ïÏÓÐÁ¦µÄ»°Ó´«µÝÁ˵Í̼Éú»î¡¢ÂÌÉ«³öÐеÄÀíÄij»ú¹¹Ëæ»úµ÷²éÁ˱¾ÊÐ500Ãû³ÉÄêÊÐÃñijÔÂµÄÆï³µ´ÎÊý£¬Í³¼ÆÈçÏ£º| [0£¬10£© | [10£¬20£© | [20£¬30£© | [30£¬40£© | [40£¬50£© | [50£¬60] | |
| 18ËêÖÁ30Ëê | 6 | 14 | 20 | 32 | 40 | 48 |
| 31ËêÖÁ44Ëê | 4 | 6 | 20 | 28 | 40 | 42 |
| 45ËêÖÁ59Ëê | 22 | 18 | 33 | 37 | 19 | 11 |
| 60Ëê¼°ÒÔÉÏ | 15 | 13 | 10 | 12 | 5 | 5 |
£¨¢ñ£©¹À¼Æ¦ÌµÄÖµ£»
£¨¢ò£©ÔÚ±¾ÊÐÀÏÄêÈË»òÖÐÄêÈËÖÐËæ»ú·ÃÎÊ3룬ÆäÖÐÔÂÆï³µ´ÎÊý³¬¹ý¦ÌµÄÈËÊý¼ÇΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃ±í¸ñ£¬¼´¿ÉµÃ³ö±¾ÊÐÒ»¸öÇàÄêÈËÔÂÆï³µµÄƽ¾ù´ÎÊý£®
£¨¢ò£©±¾ÊÐÀÏÄêÈË»òÖÐÄêÈËÖÐÔÂÆï³µÊ±¼ä³¬¹ý40´ÎµÄ¸ÅÂÊΪ$\frac{19+11+5+5}{140+60}$=$\frac{1}{5}$£®¦Î=0£¬1£¬2£¬3£¬¦Î¡«B$£¨3£¬\frac{1}{5}£©$£¬¹ÊP£¨¦Î=k£©=${∁}_{3}^{k}$$£¨\frac{1}{5}£©^{k}£¨\frac{4}{5}£©^{3-k}$£¨k=0£¬1£¬2£¬3£©£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª¿ÉµÃϱí
ÈËÊý ´ÎÊý ÄêÁä | [0£¬10£© | [10£¬20£© | [20£¬30£© | [30£¬40£© | [40£¬50£© | [50£¬60] | ºÏ¼Æ |
| ÇàÄêÈË | 10 | 20 | 40 | 60 | 80 | 90 | 300 |
| ÖÐÄêÈË | 22 | 18 | 33 | 37 | 19 | 11 | 140 |
| ÀÏÄêÈË | 15 | 13 | 10 | 12 | 5 | 5 | 60 |
¦Ì=$5¡Á\frac{10}{300}+15¡Á\frac{20}{300}$+$25¡Á\frac{40}{300}$+35¡Á$\frac{60}{300}$+45¡Á$\frac{80}{300}$+55¡Á$\frac{90}{300}$=40£®£¨5·Ö£©
£¨¢ò£©±¾ÊÐÀÏÄêÈË»òÖÐÄêÈËÖÐÔÂÆï³µÊ±¼ä³¬¹ý40´ÎµÄ¸ÅÂÊΪ$\frac{19+11+5+5}{140+60}$=$\frac{1}{5}$£®£¨7·Ö£©
¦Î=0£¬1£¬2£¬3£¬¦Î¡«B$£¨3£¬\frac{1}{5}£©$£¬¹ÊP£¨¦Î=k£©=${∁}_{3}^{k}$$£¨\frac{1}{5}£©^{k}£¨\frac{4}{5}£©^{3-k}$£¨k=0£¬1£¬2£¬3£©£®£®£¨9·Ö£©
ËùÒԦεķֲ¼ÁÐÈçÏ£º
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{64}{125}$ | $\frac{48}{125}$ | $\frac{12}{125}$ | $\frac{1}{125}$ |
E£¨¦Î£©=$3¡Á\frac{1}{5}$=0.6£®£¨12·Ö£©
µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²é¶ÔƵÊý·Ö²¼±íµÄÀí½âÓëÓ¦Ó㬹ŵä¸ÅÐÍ¡¢Ëæ»ú±äÁ¿µÄÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢Êý¾Ý´¦ÀíÄÜÁ¦¡¢Ó¦ÓÃÒâʶ£¬¿¼²é±ØÈ»Óë»òȻ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èô$A=45¡ã£¬a=\sqrt{2}£¬b=\sqrt{3}$£¬ÔòBµÈÓÚ£¨¡¡¡¡£©
| A£® | 30¡ã | B£® | 60¡ã | C£® | 30¡ã»ò150¡ã | D£® | 60¡ã»ò120¡ã |
13£®ÒÑÖªP£¬QΪ¶¯Ö±Ïßy=m£¨0£¼m£¼$\frac{{\sqrt{2}}}{2}$£©Óëy=sinxºÍy=cosxÔÚÇø¼ä$[0£¬\frac{¦Ð}{2}]$ÉϵÄ×ó£¬ÓÒÁ½¸ö½»µã£¬P£¬QÔÚxÖáÉϵÄͶӰ·Ö±ðΪS£¬R£®µ±¾ØÐÎPQRSÃæ»ýÈ¡µÃ×î´óֵʱ£¬µãPµÄºá×ø±êΪx0£¬Ôò£¨¡¡¡¡£©
| A£® | ${x_0}£¼\frac{¦Ð}{8}$ | B£® | ${x_0}=\frac{¦Ð}{8}$ | C£® | $\frac{¦Ð}{8}£¼{x_0}£¼\frac{¦Ð}{6}$ | D£® | ${x_0}£¾\frac{¦Ð}{6}$ |
3£®ÉèF1ºÍF2Ϊ˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¸ö½¹µã£¬ÈôF1£¬F2£¬P£¨0£¬2b£©ÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | y=¡À$\frac{\sqrt{3}}{3}$x | B£® | y=¡À$\sqrt{3}$x | C£® | y=¡À$\frac{\sqrt{21}}{7}$x | D£® | y=¡À$\frac{\sqrt{21}}{3}$x |
10£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬¸´Êýz=$\frac{1}{2+i}$£¬Ôòz•$\overline{z}$=£¨¡¡¡¡£©
| A£® | 25 | B£® | 5 | C£® | $\frac{1}{25}$ | D£® | $\frac{1}{5}$ |