题目内容

如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:直线SC⊥平面AMN;
(Ⅲ)求直线CM与平面AMN所成角的余弦值.
考点:直线与平面所成的角,直线与平面平行的判定,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)连结BD交AC于E,连结ME,由已知得ME∥SB,由此能证明SB∥平面ACM.
(Ⅱ)由条件有DC⊥SA,DC⊥DA,从而AM⊥DC,又AM⊥SD.从而AM⊥平面SDC,由此能证明SC⊥平面AMN.
(Ⅲ)由已知推导出∠CMN为所求的直线CM与面AMN所成的角,由此能求出直线CM与平面AMN所成角的余弦值.
解答: (Ⅰ)证明:连结BD交AC于E,连结ME.
∵ABCD是正方形,∴E是BD的中点.
∵M是SD的中点,∴ME是△DSB的中位线.
∴ME∥SB.
又∵ME?平面ACM,SB?平面ACM,
∴SB∥平面ACM.

(Ⅱ)证明:由条件有DC⊥SA,DC⊥DA,
∴DC⊥平面SAD,∴AM⊥DC.
又∵SA=AD,M是SD的中点,∴AM⊥SD.
∴AM⊥平面SDC.∴SC⊥AM.
由已知SC⊥AN,∴SC⊥平面AMN.
(Ⅲ)解:由(Ⅱ)知CN⊥面AMN,则直线CM在面AMN内的射影为NM,
∴∠CMN为所求的直线CM与面AMN所成的角.    
又SA=AB=2,∴在Rt△CDM中CD=2,MD=
2
CM=
6

SC=
SA2+AC2
=2
3

由△SNM∽△SDC可得
MN
CD
=
SM
SC
MN=
6
3
.∴cos∠CMN=
MN
CM
=
1
3

∴直线CM与平面AMN所成角的余弦值为
1
3
点评:本题考查直线与平面平行的证明,考查直线与平面垂直的证明,考查直线与平面所成角的余弦值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网