题目内容
将f(x)=cosx向右平移
个单位,得到函数y=g(x)的图象,则g(
)=( )
| π |
| 6 |
| π |
| 2 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律可得g(x)的解析式,从而求得g(
)的值.
| π |
| 2 |
解答:
解:将f(x)=cosx向右平移
个单位,得到函数y=g(x)=cos(x-
)的图象,
则g(
)=cos(
-
)=cos
=
,
故选:C.
| π |
| 6 |
| π |
| 6 |
则g(
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
故选:C.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
已知关于x的方程|x2-2x|=a(a>0)的解集为P,则P中所有元素的和可能是( )
| A、1,2,3 |
| B、2,3,4 |
| C、3,4,5 |
| D、2,3,5 |
某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为( )

| A、5 | B、6 | C、7 | D、8 |
已知△ABC的三边长a,b,c成等差数列,且a2+b2+c2=84,则实数b的取值范围是( )
A、[2
| ||||
B、(2
| ||||
C、[2
| ||||
D、(2
|
已知i是虚数单位,则
=( )
| i |
| 1-i |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
已知-2,a1,a2,-8成等差数列,-2,b1,b2,b3,-8成等比数列,则
等于( )
| a2-a1 |
| b2 |
A、
| ||||
B、
| ||||
C、-
| ||||
D、
|
已知
,
是单位向量,
•
=0.若向量
满足|
-
+
|=2,则|
|的最大值为( )
| a |
| b |
| a |
| b |
| c |
| c |
| a |
| b |
| c |
A、
| ||
B、2-
| ||
C、
| ||
D、
|