题目内容

将等腰直角三角板ADC与一个角为30°的直角三角板ABC拼在一起组成如图所示的平面四边形
ABCD,其中∠DAC=45°,∠B=30°.若
DB
=x
DA
+y
DC
,则xy的值是(  )
A、2
3
+1
B、
3
+3
C、2
D、2
3
考点:向量在几何中的应用
专题:综合题,平面向量及应用
分析:不妨取DA=1,则DC=1,AC=
2
,AB=2
2
,BC=
6
.可得xB=DA+ABcos75°,yB=ABsin75°,再利用共面向量基本定理即可得出.
解答: 解:如图所示,
不妨取DA=1,则DC=1,AC=
2
,AB=2
2
,BC=
6

∴xB=DA+ABcos75°=1+2
2
×
6
-
2
4
=
3
,yB=ABsin75°=
3
+1.
∴B(
3
3
+1).
DB
=
3
DA
+(
3
+1)
DC

∴x=
3
,y=
3
+1,
∴xy=3+
3

故选:B.
点评:本题考查了共面向量基本定理、含30°与45°角的直角三角形的性质,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网