题目内容
12.数集P={x|x=(2n+1)π,n∈Z}与数集Q={x|x=(4m±1)π,m∈Z}之间的关系是( )| A. | P⊆Q | B. | P=Q | C. | Q⊆P | D. | P≠Q |
分析 由题意,集合P中的元素都在集合Q中,集合Q中的元素都在集合P中,从而得到集合P与Q的关系.
解答 解:由题意可知,
集合P中的元素都在集合Q中,
集合Q中的元素都在集合P中,
故P=Q.
故选B.
点评 本题考查了集合关系的判断,属于基础题.
练习册系列答案
相关题目
8.下列命题中正确的是( )
| A. | 若α>β,则sinα>sinβ | |
| B. | 命题:“?x>1,x2>1”的否定是“?x≤1,x2≤1” | |
| C. | 已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围为$[{\frac{9}{5},+∞})$ | |
| D. | “若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0” |
7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是( )
| A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
17.为了了解青少年的肥胖情况是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
(3)若这30名青少年中,常喝碳酸饮料且肥胖的有2名女生,则从常喝碳酸饮料且肥胖的青少年中随机抽取2名,恰好抽到一男一女的概率是多少?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a-b)(c+d)(a-c)(b+d)}$,其中n=a+b+c+d)
| 常喝 | 不常喝 | 总计 | |
| 肥胖 | 2 | ||
| 不肥胖 | 18 | ||
| 总计 | 30 |
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
(3)若这30名青少年中,常喝碳酸饮料且肥胖的有2名女生,则从常喝碳酸饮料且肥胖的青少年中随机抽取2名,恰好抽到一男一女的概率是多少?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a-b)(c+d)(a-c)(b+d)}$,其中n=a+b+c+d)
| p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
4.函数y=xlnx的单调递增区间是( )
| A. | (-∞,e-1) | B. | (0,e-1) | C. | (e-1,+∞) | D. | (e,+∞) |
2.函数f(x)的图象上任意一点A(x,y)的坐标满足条件|x|≥|y|,称函数f(x)具有性质P,下列函数中,具有性质P的是( )
| A. | f(x)=x2 | B. | f(x)=$\frac{1}{{x}^{2}+1}$ | C. | f(x)=sinx | D. | f(x)=ln(x+1) |