题目内容

4.函数y=xlnx的单调递增区间是(  )
A.(-∞,e-1B.(0,e-1C.(e-1,+∞)D.(e,+∞)

分析 求出f(x)的导函数,令导函数大于0列出不等式,根据对数函数的运算法则求出不等式的解集即为函数的递增区间.

解答 解:求导得:f′(x)=lnx+1,
令f'(x)>0,即lnx+1>0,
解得:x>$\frac{1}{e}$,
∴f(x)的单调递增区间是 ($\frac{1}{e}$,+∞),
故选:C.

点评 此题考查了利用导数研究函数的单调性,要求学生掌握导函数的正负与函数单调性的关系,即当导函数值大于0时,函数单调递增;当导函数小于0时,函数单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网