题目内容

7.已知二次函数f(x)=ax2+bx(a≠0),并且满足f(1+x)=f(1-x),且方程f(x)-x=0有且只有一个根.
(1)求f(x)的解析式;
(2)若对任意的x∈[-2,2],不等式f(x)≤m-$\frac{3}{2}$x2恒成立,求m的取值范围.

分析 (1)由f(1+x)=f(1-x),可知函数的对称轴为x=1,由f(x)-x=0有且只有一个根,得出△=(b-1)2=0,求出a,b的值;
(2)f(x)≤m-$\frac{3}{2}$x2恒成立,整理可得x2+x≤m恒成立,只需求出左式的最大值即可.

解答 解:(1)f(1+x)=f(1-x),
∴$-\frac{b}{2a}$=1,
f(x)-x=0有且只有一个根.
∴△=(b-1)2=0,
∴b=1,a=-$\frac{1}{2}$,
∴f(x)=-$\frac{1}{2}$x2+x;
(2)f(x)≤m-$\frac{3}{2}$x2恒成立,
∴x2+x≤m恒成立,
∵x∈[-2,2],
∴x2+x≤6,
∴m≥6.

点评 考查了二次函数的对称轴,根的个数问题,恒成立问题的转换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网