题目内容

12.已知点P在函数y=$\frac{1}{x}$的图象上,过点P的直线交x、y轴正半轴于点A、B,O为坐标原点,三角形△AOB的面积为S,若$\overrightarrow{BP}=λ\overrightarrow{PA}$且S∈[2,3],则λ的取值范围是[2-$\sqrt{3}$,2$+\sqrt{3}$].

分析 设点A、B的坐标分别为(a,0),(0,b),P(x0,y0),a>0,b>0,由$\overrightarrow{BP}=λ\overrightarrow{PA}$,得到x0=$\frac{aλ}{1+λ}$,y0=-$\frac{b}{1+λ}$,根据函数的性质和三角形的面积公式即可表示出4≤$\frac{(1+λ)^{2}}{λ}$≤6,解得即可.

解答 解:设点A、B的坐标分别为(a,0),(0,b),P(x0,y0),a>0,b>0,
则由$\overrightarrow{BP}=λ\overrightarrow{PA}$,
∴x0=$\frac{aλ}{1+λ}$,y0=-$\frac{b}{1+λ}$,
∴x0•y0=$\frac{abλ}{(1+λ)^{2}}$=1,
∴ab=$\frac{(1+λ)^{2}}{λ}$,
∵S∈[2,3],S=$\frac{1}{2}$ab,
∴ab∈[4,6],
∴4≤$\frac{(1+λ)^{2}}{λ}$≤6,
解得.2-$\sqrt{3}$≤λ≤2$+\sqrt{3}$
故答案为:[2-$\sqrt{3}$,2$+\sqrt{3}$].

点评 本题考查了定比分点以及函数的性质和三角形的面积公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网