题目内容
2.设递增的等差数列{an}中,a3+a5=8,a2•a6=12.(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+2}}$(n∈N*),求数列{bn}的前n项和Tn.
分析 (1)利用等差数列的通项公式即可得出;
(2)利用“裂项求和”即可得出.
解答 解:(1)设递增的等差数列{an}的公差为d>0,∵a3+a5=8,a2•a6=12.
∴$\left\{\begin{array}{l}{2{a}_{1}+6d=8}\\{({a}_{1}+d)({a}_{1}+5d)=12}\end{array}\right.$,解得d=1=a1,
∴an=1+(n-1)=n.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.设O,A,B,M为平面上四点,$\overrightarrow{OM}$=$\frac{1}{3}$$\overrightarrow{OA}$$+\frac{2}{3}$$\overrightarrow{OB}$,则( )
| A. | 点B在线段AM上 | B. | 点M为线段BA的靠近B的三等分点 | ||
| C. | 点M为线段BA的中点 | D. | O,A,B,M四点共线 |
3.已知集合M={x|0<x<2},N={x|x>1},则M∩N=( )
| A. | [1,2) | B. | (1,2) | C. | [0,1) | D. | (0,1] |
10.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3),若m$\overrightarrow{a}$-n$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$共线,(其中m,n∈R,且n≠0),则$\frac{m}{n}$=( )
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
7.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{22π}{3}$,{bn}为等比数列,b5•b7=$\frac{π^2}{4}$,则tan(a6+b6)的值为( )
| A. | $\sqrt{3}$ | B. | $±\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $±\frac{{\sqrt{3}}}{3}$ |