题目内容
已知等差数列{an}的公差d大于0,且a1,a2是方程x2-14x+45=0的两根.
(1)求数列{an}的通项公式;
(2)设anan-1bn=1,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)设anan-1bn=1,求数列{bn}的前n项和Sn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)先求得a1,a2得出d,即可写出an.
(2)利用(1)可得bn=
=
=
(
-
),利用裂项相消法即可求得数列的和.
(2)利用(1)可得bn=
| 1 |
| anan-1 |
| 1 |
| (4n+1)(4n-3) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
解答:
解:(1)∵a1,a2是方程x2-14x+45=0的两根,且公差d大于0,
∴a1=5,a2=9,∴d=4,
∴an=5+4(n-1)=4n+1.
(2)∵anan-1bn=1,∴bn=
=
=
(
-
),
∴Sn=b1+b2+…+bn=
(1-
+
-
+…+
-
)=
(1-
)=
.
∴a1=5,a2=9,∴d=4,
∴an=5+4(n-1)=4n+1.
(2)∵anan-1bn=1,∴bn=
| 1 |
| anan-1 |
| 1 |
| (4n+1)(4n-3) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
∴Sn=b1+b2+…+bn=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
| 1 |
| 4n+1 |
| n |
| 4n+1 |
点评:本题主要考查等差数列的定义及性质和数列求和的方法裂项相消法,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目