ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÒÑÖªº¯Êýf£¨x£©=
ÔÚµãx=1´¦Á¬Ðø£¬Ôòa=4£»
¢ÚÈô²»µÈʽ|x+
|£¾|a-2|+1¶ÔÓÚÒ»ÇзÇÁãʵÊýx¾ù³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ1£¼a£¼3£»
¢Û²»µÈʽ£¨x-2£©|x2-2x-8|¡Ý0µÄ½â¼¯ÊÇ{x|x¡Ý2}
¢ÜÈç¹û¡÷A1B1C1µÄÈý¸öÄڽǵÄÓàÏÒÖµ·Ö±ðµÈÓÚ¡÷A2B2C2µÄÈý¸öÄڽǵÄÕýÏÒÖµ£¬Ôò¡÷A1B1C1ΪÈñ½ÇÈý½ÇÐΣ¬¡÷A2B2C2Ϊ¶Û½ÇÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ £¨½«ËùÓÐÕæÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
¢ÙÒÑÖªº¯Êýf£¨x£©=
|
¢ÚÈô²»µÈʽ|x+
| 1 |
| x |
¢Û²»µÈʽ£¨x-2£©|x2-2x-8|¡Ý0µÄ½â¼¯ÊÇ{x|x¡Ý2}
¢ÜÈç¹û¡÷A1B1C1µÄÈý¸öÄڽǵÄÓàÏÒÖµ·Ö±ðµÈÓÚ¡÷A2B2C2µÄÈý¸öÄڽǵÄÕýÏÒÖµ£¬Ôò¡÷A1B1C1ΪÈñ½ÇÈý½ÇÐΣ¬¡÷A2B2C2Ϊ¶Û½ÇÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£º¸ù¾Ýº¯Êýf£¨x£©=
ÔÚµãx=1´¦Á¬Ðø£¬Çó³öaÖµ£¬¿ÉÅжϢ٣»¸ù¾ÝÔ²»µÈʽºã³ÉÁ¢£¬|a-2|+1£¼2£¬Çó³öaµÄ·¶Î§£¬¿ÉÅжϢڣ»½â²»µÈʽ£¨x-2£©|x2-2x-8|¡Ý0£¬¿ÉÅжϢۣ»¸ù¾ÝÒÑÖª½áºÏÈý½Çº¯ÊýµÄ·ûºÅ£¬ÀûÓ÷´Ö¤·¨£¬¿ÉÅжϢܣ®
|
½â´ð£º
½â£ºÈôº¯Êýf£¨x£©=
ÔÚµãx=1´¦Á¬Ðø£¬Ôò
=4=a+1£¬Ôòa=3£¬¹Ê¢Ù´íÎó£»
²»µÈʽ|x+
|£¾|a-2|+1¶ÔÓÚÒ»ÇзÇÁãʵÊýx¾ù³ÉÁ¢£¬Ôò|a-2|+1£¼2£¬½âµÃ1£¼a£¼3£¬¹Ê¢ÚÕýÈ·£»
£¨x-2£©|x2-2x-8|¡Ý0µÄ½â¼¯ÊÇ{x|x¡Ý2»òx=-2}£¬¹Ê¢Û´íÎó£»
¡÷A2B2C2µÄÈý¸öÄڽǵÄÕýÏÒÖµ¾ù´óÓÚ0£¬
ËùÒÔ¡÷A1B1C1µÄÈý¸öÄڽǵÄÓàÏÒÖµÒ²¾ù´óÓÚ0£¬Ôò¡÷A1B1C1ÊÇÈñ½ÇÈý½ÇÐΣ®
Èô¡÷A2B2C2ÊÇÈñ½ÇÈý½ÇÐΣ¬ÓÉ
£¬
µÃ
£¬
ÄÇô£¬A2+B2+C2=
£¬ÕâÓëÈý½ÇÐÎÄڽǺÍÊǦÐÏàì¶Ü£»
Èô¡÷A2B2C2ÊÇÖ±½ÇÈý½ÇÐΣ¬²»·ÁÉèA2=
£¬
ÔòsinA2=1=cosA1£¬ËùÒÔA1ÔÚ£¨0£¬¦Ð£©·¶Î§ÄÚÎÞÖµ£®
ËùÒÔ¡÷A2B2C2ÊǶ۽ÇÈý½ÇÐΣ¬¹Ê¢ÜÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Ü
|
| lim |
| x¡ú1 |
| x3+2x-3 |
| x-1 |
²»µÈʽ|x+
| 1 |
| x |
£¨x-2£©|x2-2x-8|¡Ý0µÄ½â¼¯ÊÇ{x|x¡Ý2»òx=-2}£¬¹Ê¢Û´íÎó£»
¡÷A2B2C2µÄÈý¸öÄڽǵÄÕýÏÒÖµ¾ù´óÓÚ0£¬
ËùÒÔ¡÷A1B1C1µÄÈý¸öÄڽǵÄÓàÏÒÖµÒ²¾ù´óÓÚ0£¬Ôò¡÷A1B1C1ÊÇÈñ½ÇÈý½ÇÐΣ®
Èô¡÷A2B2C2ÊÇÈñ½ÇÈý½ÇÐΣ¬ÓÉ
|
µÃ
|
ÄÇô£¬A2+B2+C2=
| ¦Ð |
| 2 |
Èô¡÷A2B2C2ÊÇÖ±½ÇÈý½ÇÐΣ¬²»·ÁÉèA2=
| ¦Ð |
| 2 |
ÔòsinA2=1=cosA1£¬ËùÒÔA1ÔÚ£¨0£¬¦Ð£©·¶Î§ÄÚÎÞÖµ£®
ËùÒÔ¡÷A2B2C2ÊǶ۽ÇÈý½ÇÐΣ¬¹Ê¢ÜÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Ü
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄÁ¬ÐøÐÔ£¬½â²»µÈʽ£¬½âÈý½ÇÐΣ¬ºã³ÉÁ¢ÎÊÌ⣬ÄѶÈÖеµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿