题目内容
10.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为( )| A. | π | B. | $\frac{3π}{4}$ | C. | $\frac{3π}{2}$ | D. | $\frac{5π}{4}$ |
分析 由x∈[0,$\frac{9π}{8}$]求出2x+$\frac{π}{4}$的范围,由正弦函数的图象画出函数的大致图象,由函数的图象,以及正弦图象的对称轴求出x1+x2、x2+x3的值,即可求出x1+2x2+x3的值.
解答 解:由题意x∈[0,$\frac{9π}{8}$],则2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{2}$],
画出函数的大致图象:
由图得,当$\frac{\sqrt{2}}{2}≤a<1$ 时,方程f(x)=a恰好有三个根,![]()
由2x+$\frac{π}{4}$=$\frac{π}{2}$得x=$\frac{π}{8}$,由2x+$\frac{π}{4}$=$\frac{3π}{2}$得x=$\frac{5π}{8}$,
由图知,点(x1,0)与点(x2,0)关于直线$x=\frac{π}{8}$对称,
点(x2,0)与点(x3,0)关于直线$x=\frac{5π}{8}$对称,
∴x1+x2=$\frac{π}{4}$,x2+x3=$\frac{5π}{4}$,
即x1+2x2+x3=$\frac{π}{4}$+$\frac{5π}{4}$=$\frac{3π}{2}$,
故选C.
点评 本题考查正弦函数的图象,以及正弦函数图象对称性的应用,考查整体思想,数形结合思想.
练习册系列答案
相关题目
1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有( )
| A. | f(x1)≥f(x2) | B. | f(x1)=f(x2) | C. | f(x1)>f(x2) | D. | f(x1)≤f(x2) |
5.已知集合A={x|x(x-2)=0},B={x∈Z|x2≤1},则A∪B等于( )
| A. | {-2,-1,0,1} | B. | {-1,0,1,2} | C. | [-2,2] | D. | {0,2} |
5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是( )
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是( )
| A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
| C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |