题目内容
6.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,若命题p:$\overrightarrow{a}$•$\overrightarrow{b}$>0,命题q:$\overrightarrow{a}$,$\overrightarrow{b}$夹角是锐角,则命题p是命题q成立的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 利用数量积运算性质、三角函数求值即可判断出结论.
解答 解:设$\overrightarrow{a}$,$\overrightarrow{b}$夹角是θ,
命题p:$\overrightarrow{a}$•$\overrightarrow{b}$>0,则cosθ>0,∴θ是锐角或0,
则命题p是命题q成立的必要不充分条件.
故选:B.
点评 本题考查了向量数量积运算性质、向量夹角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.执行如图的程序框图,若输入?=0.01,则输出的N=( )

| A. | 102 | B. | 101 | C. | 100 | D. | 99 |
11.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
18.已知命题¬p:存在x∈(1,2)使得ex-a>0,若p是真命题,则实数a的取值范围为( )
| A. | (-∞,e) | B. | (-∞,e] | C. | (e2,+∞) | D. | [e2,+∞) |
16.
从A点斜向上抛出一个小球,曲线ABCD是小球运动的一段轨迹,建立如图所示的正交坐标系xOy,x轴沿水平方向,轨迹上三个点的坐标分别为A(-L,0),C(L,0),D(2L,3L),小球受到的空气阻力忽略不计,轨迹与y轴的交点B的坐标为( )
| A. | (0,-$\frac{L}{2}$) | B. | (0,-L) | C. | (0,-$\frac{3L}{2}$) | D. | (0,-2L) |