题目内容
3.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲线在点A与点B之间的“弯曲度”.设曲线y=ex上不同的两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<3恒成立,则实数t的取值范围是( )| A. | (-∞,3] | B. | (-∞,2] | C. | (-∞,1] | D. | [1,3] |
分析 求出函数y=ex的导数,可得切线的斜率,运用φ(A,B),由分离参数法,可得t<$\frac{3}{φ(A,B)}$恒成立,求得右边的范围或最值,即可得到t的范围.
解答 解:y=ex的导数为y′=ex,
φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{\sqrt{({x}_{1}-{x}_{2})^{2}+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}$=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{\sqrt{1+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}$>0,
可得$\frac{1}{φ(A,B)}$=$\frac{\sqrt{1+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}$=$\sqrt{1+\frac{1}{({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}$>1,
t•φ(A,B)<3恒成立,则t<$\frac{3}{φ(A,B)}$恒成立,
由$\frac{3}{φ(A,B)}$>3,
即有t≤3.
故选:A.
点评 本题考查新定义的理解和运用,考查导数的运用:求切线的斜率,考查不等式恒成立问题的解法,注意运用转化思想,求最值,考查运算能力,属于中档题.
练习册系列答案
相关题目
13.“${(\frac{1}{3})^x}<1$”是“$\frac{1}{x}>1$”的( )
| A. | 必要且不充分条件 | B. | 充分且不必要条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
14.若命题p:对任意的x∈R,都有x3-x2+1<0,则¬p为( )
| A. | 不存在x∈R,使得x3-x2+1<0 | B. | 存在x∈R,使得x3-x2+1<0 | ||
| C. | 对任意的x∈R,都有x3-x2+1≥0 | D. | 存在x∈R,使得x3-x2+1≥0 |
11.已知i为虚数单位,若复数z满足(1-i)z=1+i,则|z|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
18.
为了解甲、乙两个教学班级(每班学生数均为50人)的教学效果,期末考试后,对甲、乙两个班级的学生成绩进行统计分析,画如图甲班学生布线频率分布直方图和乙班学生成绩频数分布表,记成绩不低于80分为优秀.
(1)根据频率分布直方图及频数分布表,填写下面2×2列联表,并判断有多大的把握认为:“成绩优秀”与所在教学班级有关.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)在甲、乙两个班成绩不及格(低于60分)的学生中任选两人,记其中甲班的学生人数为ξ,求ξ的概率分布列与数学期望.
(1)根据频率分布直方图及频数分布表,填写下面2×2列联表,并判断有多大的把握认为:“成绩优秀”与所在教学班级有关.
| 甲班 | 乙班 | 总计 | |
| 成绩优秀 | 28 | 20 | 48 |
| 成绩不优秀 | 22 | 30 | 52 |
| 总计 | 50 | 50 | 100 |
| P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 1.322 | 2.072 | 2.706 | 3.840 | 5.024 |
15.设A={(x,y)|y=cos(arccosx)},B={(x,y)|y=arccos(cosx)},则A∩B=( )
| A. | {(x,y)|y=x,-1≤x≤1} | B. | $\left\{{(x\;,\;\;y)\left|{y=x\;,\;\;-\frac{1}{2}≤x≤\frac{1}{2}}\right.}\right\}$ | ||
| C. | {(x,y)y=x,0≤x≤1} | D. | {(x,y)|y=x,0≤x≤π} |