ÌâÄ¿ÄÚÈÝ

µÈ±ßÈý½ÇÐÎABCµÄ±ß³¤Îª3£¬µãD£¬¡¢E·Ö±ðÊDZßAB¡¢ACÉϵĵ㣬ÇÒÂú×ã
AD
DB
=
CE
EA
=
1
2
£®½«¡÷ADEÑØDEÕÛÆðµ½¡÷A1DEµÄλÖã¬Ê¹¶þÃæ½ÇA1-DE-B³ÉÖ±¶þÃæ½Ç£¬Á¬½ÓA1B¡¢A1C£®

£¨1£©ÇóÖ¤£ºA1D¡ÍÆ½ÃæBCED£»
£¨2£©ÇóA1EÓëÆ½ÃæA1BCËù³É½ÇµÄÕýÏÒÖµ£®
£¨3£©ÔÚÏß¶ÎBCÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹Ö±ÏßPA1ÓëÆ½ÃæA1BDËù³ÉµÄ½ÇΪ60¡ã£¿Èô´æÔÚ£¬Çó³öPBµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÓë¶þÃæ½ÇÓйصÄÁ¢Ì弸ºÎ×ÛºÏÌâ
רÌ⣺¿Õ¼äλÖùØÏµÓë¾àÀë,¿Õ¼ä½Ç
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃA1D¡ÍDE£¬BD¡ÍDE£¬A1D¡ÍBD£¬ÓÉ´ËÄÜÖ¤Ã÷A1D¡ÍÆ½ÃæBCED£®
£¨2£©ÒÔDΪ¿Õ¼äÖ±½Ç×ø±êϵµÄÔ­µã£¬ÒÔDB¡¢DE¡¢DA1Ϊx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵD-xyz£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³öA1EÓëÆ½ÃæA1BCËù³É½ÇµÄÕýÏÒÖµ£®
£¨3£©¼ÙÉèÔÚÏß¶ÎBCÉÏ´æÔÚµãP£¬Ê¹Ö±ÏßPA1ÓëÆ½ÃæA1BDËù³ÉµÄ½ÇΪ60¡ã£¬ÀûÓÃÏòÁ¿·¨ÄÜÍÆµ¼³ö´ËʱPB=
5
2
£®
½â´ð£º £¨1£©Ö¤Ã÷£ºÓÉÌâÖªÔÚͼ1ÖУ¬ÔÚ¡÷ADEÖУ¬AD=1£¬AE=2£¬
ÔòDE2=AD2+AE2-2AD•AE•cosA=3£¬
¼´µÃ£ºDE=
3
£¬ËùÒÔAE2=AD2+DE2£¬
¼´µÃ¡ÏADE=90¡ã£¬
ÔòÔÚͼ2ÖУ¬ÓÐA1D¡ÍDE£¬BD¡ÍDE£¬
¶þÃæ½ÇA1-DE-BµÄÆ½Ãæ½Ç¡ÏA1DB=90¡ã£¬
¼´µÃA1D¡ÍBD£¬
¡ßA1D¡ÍBD£¬A1D¡ÍDE£¬ÇÒBD£¬DE?Æ½ÃæBCDE£¬
BD¡ÉDE=D£¬¡àA1D¡ÍÆ½ÃæBCED£®
£¨2£©½â£ºÓÉ£¨1£©Öª£ºA1D¡ÍBD£¬A1D¡ÍDE£¬BD¡ÍDE£¬
ËùÒÔÒÔDΪ¿Õ¼äÖ±½Ç×ø±êϵµÄÔ­µã£¬
ÒÔDB¡¢DE¡¢DA1Ϊx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵD-xyz£®
ÔòD£¨0£¬0£¬0£©£¬A1£¨0£¬0£¬1£©£¬E£¨0£¬
3
£¬0£©£¬B£¨2£¬0£¬0£©£¬C£¨
1
2
£¬
3
3
2
£¬0
£©£¬
¡à
BC
=(-
3
2
£¬
3
3
2
£¬0)
£¬
BA1
=£¨-2£¬0£¬1£©£¬
A1E
=£¨0£¬
3
£¬-1£©£¬
ÁîÆ½ÃæA1BCµÄ·¨ÏòÁ¿Îª
n
=(x£¬y£¬z)
£¬
ÓÉ
n
BC
=-
3
2
x+
3
3
2
y=0
n
BA1
=-2x+z=0
£¬µÃ
n
=£¨1£¬
1
3
£¬2£©£¬
¼ÇA1EÓëÆ½ÃæA1BCËù³É½ÇΪ¦È£¬
Ôòsin¦È=|cos£¼
n
£¬
A1E
£¾|=|
0+1-2
4
1+4+
1
3
|=
3
8
£®
¡àA1EÓëÆ½ÃæA1BCËù³É½ÇµÄÕýÏÒֵΪ
3
8
£®
£¨3£©½â£º¼ÙÉèÔÚÏß¶ÎBCÉÏ´æÔÚµãP£¬Ê¹Ö±ÏßPA1ÓëÆ½ÃæA1BDËù³ÉµÄ½ÇΪ60¡ã£®
Áî
BP
=¦Ë
BC
£¬
Ôò
PA1
=
BA1
-
BP
=£¨
3
2
¦Ë-2£¬-
3
3
2
¦Ë£¬1
£©£¬
¶øÆ½ÃæA1BDµÄÒ»¸ö·¨ÏòÁ¿Îª
m
=£¨0£¬1£¬0£©£¬
ÔòÓÉ|
PA1
m
|
m
|•|
PA1
|
|=
3
2
£¬½âµÃ¦Ë=
5
6
£¬
¡àÔÚÏß¶ÎBCÉÏ´æÔÚµãP£¬Ê¹µÃÖ±ÏßPA1ÓëÆ½ÃæA1BDËù³ÉµÄ½ÇΪ60¡ã£¬´ËʱPB=
5
2
£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÆ½Ãæ´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÖ±ÏßÓëÆ½ÃæËù³É½ÇµÄÕýÏÒÖµµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þÒ£µãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø