题目内容

在△ABC中,角A、B、C所对边的长分别为a、b、c,若∠A=60°,a=2,则△ABC面积的最大值为(  )
A、1
B、
3
C、2
D、
3
2
考点:余弦定理
专题:
分析:利用余弦定理列出关系式,把cosA与a的值代入,并利用基本不等式求出bc的最大值,即可求出面积的最大值.
解答: 解:由余弦定理得:4=a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
即bc≤4,
∴S△ABC=
1
2
bcsinA≤
3

则△ABC面积的最大值为
3

故选:B.
点评:此题考查了余弦定理,三角形面积公式,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网