题目内容
在△ABC中,角A、B、C所对边的长分别为a、b、c,若∠A=60°,a=2,则△ABC面积的最大值为( )
| A、1 | ||||
B、
| ||||
| C、2 | ||||
D、
|
考点:余弦定理
专题:
分析:利用余弦定理列出关系式,把cosA与a的值代入,并利用基本不等式求出bc的最大值,即可求出面积的最大值.
解答:
解:由余弦定理得:4=a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
即bc≤4,
∴S△ABC=
bcsinA≤
,
则△ABC面积的最大值为
.
故选:B.
即bc≤4,
∴S△ABC=
| 1 |
| 2 |
| 3 |
则△ABC面积的最大值为
| 3 |
故选:B.
点评:此题考查了余弦定理,三角形面积公式,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
若直线l:y=kx-
与直线x+y-3=0的交点位于第二象限,则直线l的倾斜角的取值范围是( )
| 3 |
A、(
| ||||
B、[
| ||||
C、(
| ||||
D、(
|
| 1 |
| x |
A、f(x)=
| ||
| B、f(x)=x2+x | ||
| C、f(x)=log3(x2+1) | ||
| D、f(x)=2x-2-x |
赋值语句N=N+1的意义是( )
| A、N等于N+1 |
| B、N+1等于N |
| C、将N的值赋给N+1 |
| D、将N的原值加1再赋给N,即N的值增加1 |