题目内容

已知数列{an}满足a1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(Ⅰ)求证:数列{
1
an
}为等差数列;
(Ⅱ)令bn=
2
3
1
an
+5),求数列{
bn
3n
}前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出2an-2an+1=3anan+1,从而
1
an+1
-
1
an
=
3
2
,由此能证明{
1
an
}是首项为
5
2
,公差为
3
2
的等差数列.
(Ⅱ)由
1
an
=
3n+2
2
,得an=
2
3n+2
,从而bn=n+4,
bn
3n
=
n+4
3n
,由此利用错位相减法能求出数列{
bn
3n
}前n项和Tn
解答: (Ⅰ)证明:∵数列{an}满足a1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

∴anan+1+2an=4anan+1+2an+1
∴2an-2an+1=3anan+1
1
an+1
-
1
an
=
3
2

∴{
1
an
}是首项为
5
2
,公差为
3
2
的等差数列.
(Ⅱ)解:由(Ⅰ)得数列{
1
an
}的通项公式为:
1
an
=
5
2
+(n-1)×
3
2
=
3n+2
2

an=
2
3n+2
,∴bn=
2
3
1
an
+5)=n+4,
bn
3n
=
n+4
3n

∴Tn=
5
3
+
6
32
+
7
33
+…+
n+4
3n
,①
1
3
Tn=
5
32
+
6
33
+
7
34
+…+
n+4
3n+1
,②
①-②,
2
3
Tn
=
5
3
+
1
32
+
1
33
+
1
34
+…+
1
3n
-
n+4
3n+1

=
5
3
+
1
9
(1-
1
3n-1
)
1-
1
3
-
n+4
3n+1

=2-
n+7
3n+1

∴Tn=3-
n+7
2•3n
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网