题目内容
已知数列{an}满足a1=
,且对任意n∈N*,都有
=
(Ⅰ)求证:数列{
}为等差数列;
(Ⅱ)令bn=
(
+5),求数列{
}前n项和Tn.
| 2 |
| 5 |
| an |
| an+1 |
| 4an+2 |
| an+1+2 |
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)令bn=
| 2 |
| 3 |
| 1 |
| an |
| bn |
| 3n |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出2an-2an+1=3anan+1,从而
-
=
,由此能证明{
}是首项为
,公差为
的等差数列.
(Ⅱ)由
=
,得an=
,从而bn=n+4,
=
,由此利用错位相减法能求出数列{
}前n项和Tn.
| 1 |
| an+1 |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| an |
| 5 |
| 2 |
| 3 |
| 2 |
(Ⅱ)由
| 1 |
| an |
| 3n+2 |
| 2 |
| 2 |
| 3n+2 |
| bn |
| 3n |
| n+4 |
| 3n |
| bn |
| 3n |
解答:
(Ⅰ)证明:∵数列{an}满足a1=
,且对任意n∈N*,都有
=
,
∴anan+1+2an=4anan+1+2an+1,
∴2an-2an+1=3anan+1,
∴
-
=
,
∴{
}是首项为
,公差为
的等差数列.
(Ⅱ)解:由(Ⅰ)得数列{
}的通项公式为:
=
+(n-1)×
=
,
∴an=
,∴bn=
(
+5)=n+4,
=
,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,
Tn=
+
+
+
+…+
-
=
+
-
=2-
,
∴Tn=3-
.
| 2 |
| 5 |
| an |
| an+1 |
| 4an+2 |
| an+1+2 |
∴anan+1+2an=4anan+1+2an+1,
∴2an-2an+1=3anan+1,
∴
| 1 |
| an+1 |
| 1 |
| an |
| 3 |
| 2 |
∴{
| 1 |
| an |
| 5 |
| 2 |
| 3 |
| 2 |
(Ⅱ)解:由(Ⅰ)得数列{
| 1 |
| an |
| 1 |
| an |
| 5 |
| 2 |
| 3 |
| 2 |
| 3n+2 |
| 2 |
∴an=
| 2 |
| 3n+2 |
| 2 |
| 3 |
| 1 |
| an |
| bn |
| 3n |
| n+4 |
| 3n |
∴Tn=
| 5 |
| 3 |
| 6 |
| 32 |
| 7 |
| 33 |
| n+4 |
| 3n |
| 1 |
| 3 |
| 5 |
| 32 |
| 6 |
| 33 |
| 7 |
| 34 |
| n+4 |
| 3n+1 |
①-②,
| 2 |
| 3 |
| 5 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| n+4 |
| 3n+1 |
=
| 5 |
| 3 |
| ||||
1-
|
| n+4 |
| 3n+1 |
=2-
| n+7 |
| 3n+1 |
∴Tn=3-
| n+7 |
| 2•3n |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目