题目内容

8.已知定义在(0,+∞)上的函数f(x)满足$f({\frac{x}{y}})=f(x)-f(y)$,且当x>1时,f(x)<0
(1)求f(1)的值;
(2)判断f(x)的单调性并说明;
(3)若f(3)=-1,解不等式f(|x|)<-2.

分析 (1)令x=y>0.得f(1)=f(x)-f(x);
(2)设x 1>x 2>0   则$\frac{{x}_{1}}{{x}_{2}}>1$,f($\frac{{x}_{1}}{{x}_{2}}$)<0,f(x1)-f(x2)=f($\frac{{x}_{1}}{{x}_{2}}$)<0
(3)令x=9,y=3⇒f(9)=f(3)+f(3)=-2,
不等式f(|x|)<-2⇒f(|x|)<f(9)⇒|x|>9⇒x<-9或x>9

解答 解:(1)令x=y>0.得f(1)=f(x)-f(x)=0;
(2)设x 1>x 2>0   则$\frac{{x}_{1}}{{x}_{2}}>1$,f($\frac{{x}_{1}}{{x}_{2}}$)<0
∴f(x1)-f(x2)=f($\frac{{x}_{1}}{{x}_{2}}$)<0
所以f(x)在(0,+∞)为减函数;
(3)令x=9,y=3⇒f(3)=f(9)-f(3)⇒f(9)=f(3)+f(3)=-2,
∴不等式f(|x|)<-2⇒f(|x|)<f(9),
∵f(x)在(0,+∞)为减函数,
∴|x|>9⇒x<-9或x>9
所以原不等式的解集为 {x|x<-9或x>9}.

点评 本题考查了抽象函数的赋值法、单调性、解不等式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网