题目内容
等差数列的公差为1,且a1+a2+a3+…+a99=99,则a3+a6+…+a99的值为( )
| A、0 | B、33 | C、66 | D、99 |
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:S=a1+a4+…+a97,则a2+a5+…+a98=S+33,a3+a6+…+a99=S+33+33=S+66,代入已知式子可得S,可得答案.
解答:
解:设S=a1+a4+…+a97,则a2+a5+…+a98=S+33,
a3+a6+…+a99=S+33+33=S+66,
∴a1+a2+a3+…+a99=S+(S+33)+(S+66)=99,
解得S=0,∴a3+a6+…+a99=66,
故选:C
a3+a6+…+a99=S+33+33=S+66,
∴a1+a2+a3+…+a99=S+(S+33)+(S+66)=99,
解得S=0,∴a3+a6+…+a99=66,
故选:C
点评:本题考查等差数列的前n项和,属基础题.
练习册系列答案
相关题目
在R上定义运算⊙:a⊙b=-a+b2,则不等式x⊙(x-2)<0的解集为( )
| A、(0,2) |
| B、(1,4) |
| C、(-∞,-2)∪(1,+∞) |
| D、(-1,4) |
已知f(x)的定义域为R,对任意x∈R,有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,则f(2013)的值为( )
| A、-1 | ||
| B、1 | ||
C、lg
| ||
D、lg
|
在数列{an}中,若存在非零整数T,使得am+T=am对于任意的m∈N*均成立,那么称数列{an}为周期数列,其中T叫数列的周期.若数列{xn}满足xn+1=|xn-xn-1|(n≥2且n∈N),且x1=2,x2=a(a∈R,a≠0),当数列{xn}的正周期最小时,该数列的前2012项的和是( )
| A、1344 | B、2684 |
| C、1342 | D、2688 |
函数f(x)=ax2-2ax+2+b(a≠0)在闭区间[2,3]上有最大值5,最小值2,则a,b的值为( )
| A、a=1,b=0 |
| B、a=1,b=0或a=-1,b=3 |
| C、a=-1,b=3 |
| D、以上答案均不正确 |
设a,b,c均为正数,且2a=log0.5a,(
)b=log0.5b,(
)c=log2c,则( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、a<b<c |
| B、c<b<a |
| C、c<a<b |
| D、b<a<c |