题目内容
15.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.(1)求f(x);
(2)若f(x0)=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,其中x0∈[0,$\frac{π}{2}$],求x0.
分析 (1)由三角函数公式化简可得f(x)=$\frac{1}{2}$+sin(2ωx-$\frac{π}{6}$),由周期公式可得ω,可得解析式;
(2)由题意可得sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,结合x0∈[0,$\frac{π}{2}$]可得.
解答 解:(1)由三角函数公式化简可得:
f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)
=$\frac{1}{2}$(1-cos2ωx)+$\sqrt{3}$sinωxcosωx
=$\frac{1}{2}$-$\frac{1}{2}$cos2ωx+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{1}{2}$+sin(2ωx-$\frac{π}{6}$),
由周期公式可得$\frac{2π}{2ω}$=π,解得ω=1,
∴f(x)=$\frac{1}{2}$+sin(2x-$\frac{π}{6}$);
(2)∵f(x0)=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,∴sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∵x0∈[0,$\frac{π}{2}$],∴2x0-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴2x0-$\frac{π}{6}$=$\frac{π}{3}$或$\frac{2π}{3}$,解得x0=$\frac{π}{4}$或$\frac{5π}{12}$
点评 本题考查两角和与差的三角函数,涉及三角函数的周期性,属基础题.
练习册系列答案
相关题目
3.已知动点M到点F(1,0)的距离与M到定直线x+1=0的距离相等,动点M的轨迹为C,过点F且倾斜角等于45°的直线与轨迹C交于A、B两点,O是坐标原点,则△OAB的面积等于( )
| A. | 3$\sqrt{2}$ | B. | 3$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
10.某大学进行自主招生考试面试,需将每5位考生组成一组进行口头答题,每位考生可以从5个备选题目中任选1题口头作答,则恰有2个题目没有被某组5为考生选中的情况有( )
| A. | 2400种 | B. | 1500种 | C. | 400种 | D. | 60种 |