题目内容
3.已知数列{an}各项均不为0,其前n项和为Sn,且a1=1,2Sn=anan+1,则Sn=$\frac{n(n+1)}{2}$.分析 利用递推关系、等差数列的通项公式及其前n项和公式即可得出.
解答 解:当n=1时,2S1=a1a2,即2a1=a1a2,∴a2=2.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∴Sn=$\frac{n(n+1)}{2}$.
故答案为:$\frac{n(n+1)}{2}$.
点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x-y≤2}\\{2x+y≤4}\end{array}\right.$,则z=$\frac{y+3}{x-1}$的取值范围是( )
| A. | (-∞,-3]∪[1,+∞) | B. | [-1,3] | C. | (-∞,-1]∪[3,+∞) | D. | [-3,1] |
11.已知全集U=R,集合A={-l,0,l,2},B={y|y=2x},图中阴影部分所表示的集合为( )

| A. | {-1,0} | B. | {l,2} | C. | {-l} | D. | {0,1,2} |
12.设集合A={x|x2-x=0},B={x|lnx<0},则A∪B=( )
| A. | (0,1] | B. | [0,1) | C. | (-∞,1] | D. | [0,1] |