题目内容
15.(x2-x-2)5的展开式中,x3的系数等于120.分析 根据(x2-x-2)5 =(x-2)5•(x+1)5 ,把(x-2)5和(x+1)5 ,分别利用二项式定理展展开,可得x3的系数.
解答 解:(x2-x-2)5 =(x-2)5•(x+1)5 =
[${C}_{5}^{0}$•x5+${C}_{5}^{1}$•x4•(-2)+${C}_{5}^{2}$•x3•(-2)2+${C}_{5}^{3}$•x2•(-2)3+${C}_{5}^{4}$•x•(-2)4+${C}_{5}^{5}$•(-2)5]•[${C}_{5}^{0}$•x5+${C}_{5}^{1}$•x4+${C}_{5}^{2}$•x3+${C}_{5}^{3}$•x2+${C}_{5}^{4}$•x+${C}_{5}^{5}$],
∴x3的系数等于 ${C}_{5}^{2}$•(-2)2 (${C}_{5}^{5}$)+${C}_{5}^{3}$•(-2)3•${C}_{5}^{4}$+${C}_{5}^{4}$•(-2)4•${C}_{5}^{3}$+${C}_{5}^{5}$•(-2)5•${C}_{5}^{2}$=40-400+800-320=120,
故答案为:120.
点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
5.已知数列{an},a1=$\frac{1}{2}$,an+1=$\frac{{3{a_n}}}{{{a_n}+3}}$.
求:(1)写出a2,a3,a4,a5;
(2)求出数列{an}的通项公式an.
求:(1)写出a2,a3,a4,a5;
(2)求出数列{an}的通项公式an.
6.i是虚数单位,复数$\frac{{2+{i^3}}}{1-i}$=( )
| A. | $\frac{3+3i}{2}$ | B. | $\frac{1+3i}{2}$ | C. | $\frac{1+i}{2}$ | D. | $\frac{3+i}{2}$ |