题目内容

9.在△ABC中,若$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,则△ABC为直角三角形(填“锐角”、“直角”或“钝角”)

分析 诱导公式、两角和的正弦公式求得sin(A+B)=sinC=1,C为直角,从而得出结论.

解答 解:△ABC中,∵$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,即sinAcosB=1-sinBcosA,
∴sin(A+B)=sinC=1,∴C=$\frac{π}{2}$,
故△ABC为直角三角形,
故答案为:直角.

点评 本题主要考查诱导公式、两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网