题目内容
11.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤5\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则当∠APB的最大时,cos∠APB为( )| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 作出不等式组对应的平面区域,根据数形结合求确定当∠PAB最大时点P的位置,利用余弦函数的倍角公式,即可求出结论.
解答
解:作出不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域D,如图所示,
要使∠APB最大,
则∠OPB最大,
∵sin∠OPB=$\frac{OB}{OP}$=$\frac{1}{OP}$,
∴只要OP最小即可.
则P到圆心的距离最小即可,
由图象可知当OP垂直直线3x+4y-10=0,此时|OP|=$\frac{|-10|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{10}{5}$=2,|OA|=1,
设∠APB=α,则∠APO=$\frac{α}{2}$,即sin$\frac{α}{2}$=$\frac{OA}{OP}$=$\frac{1}{2}$,
此时cosα=1-2sin2$\frac{α}{2}$=1-2×($\frac{1}{2}$)2=1-$\frac{1}{2}$=$\frac{1}{2}$,
即cos∠APB=$\frac{1}{2}$.
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键,要求熟练掌握两角和的倍角公式.
练习册系列答案
相关题目
2.若16x=9y=4,则xy等于( )
| A. | log43 | B. | log49 | C. | log92 | D. | log94 |
19.在△ABC中,a,b,c分别是角A,B,C所对边的边长,若cosC+sinC-$\frac{2}{cosB+sinB}$=0,则$\frac{a+b}{c}$的值是( )
| A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{3}$+1 | D. | 2 |
3.设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,$f'(x)+\frac{1}{2}<4x$.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )
| A. | $[{-\frac{1}{2},+∞})$ | B. | $[{-\frac{3}{2},+∞})$ | C. | [-1,+∞) | D. | [-2,+∞) |
1.下列说法正确的是( )
| A. | 若p∧q为假命题,则p、q均为假命题 | |
| B. | 命题“若x2=1,则x=1”为真命题 | |
| C. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 | |
| D. | 命题“存在一个实数x,使不等式x2-3x+6<0成立”为真命题 |