题目内容

在焦点分别为F1、F2的双曲线上有一点P,若∠F1PF2=
π
3
,|PF2|=2|PF1|,则该双曲线的离心率等于(  )
A、2
B、
2
C、3
D、
3
考点:双曲线的简单性质
专题:计算题,解三角形,圆锥曲线的定义、性质与方程
分析:由双曲线的定义,结合条件求出|PF2|=4a,|PF1|=2a,再由余弦定理,即可得到a,c的关系式,再由离心率公式,即可得到.
解答: 解:由于|PF2|=2|PF1|,
则P在双曲线的左支上,
则|PF2|-|PF1|=2a,
解得,|PF2|=4a,|PF1|=2a,
由于∠F1PF2=
π
3

则在△F1PF2中,由余弦定理,可得,
cos60°=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|

=
4a2+16a2-4c2
2•2a•4a
=
1
2

则有c=
3
a,即有e=
c
a
=
3

故选D.
点评:本题考查双曲线的定义和性质,考查余弦定理的运用,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网