题目内容
已知向量
=(sinx,
),
=(cosx,-1).
(1)当
∥
时,求2cos2x-sin2x的值;
(2)求f(x)=(
+
)•
在[-
,0]上的最大值.
| a |
| 3 |
| 2 |
| b |
(1)当
| a |
| b |
(2)求f(x)=(
| a |
| b |
| b |
| π |
| 2 |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)当
∥
时可得tanx=-
,可得2cos2x-sin2x=
,化为切函数,代值计算可得;
(2)由向量和三角函数的知识可得f(x)=
sin(2x+
),由x的范围可得.
| a |
| b |
| 3 |
| 2 |
| 2cos2x-sin2x |
| cos2x+sin2x |
(2)由向量和三角函数的知识可得f(x)=
| ||
| 2 |
| π |
| 4 |
解答:
解:(1)当
∥
时,-sinx=
cosx,
∴tanx=
=-
,
∴2cos2x-sin2x=
=
=
=
=
;
(2)f(x)=(
+
)•
=
•
+
2=sinxcosx-
+cos2x+1
=
sin2x-
+
+1
=
sin2x+
cos2x=
sin(2x+
),
∵x∈[-
,0],∴2x+
∈[-
,
],
∴sin(2x+
)∈[-
,
],
∴当sin(2x+
)=
时,f(x)=(
+
)•
取最大值
.
| a |
| b |
| 3 |
| 2 |
∴tanx=
| sinx |
| cosx |
| 3 |
| 2 |
∴2cos2x-sin2x=
| 2cos2x-sin2x |
| cos2x+sin2x |
=
| 2cos2x-2sinxcosx |
| cos2x+sin2x |
=
| 2-2tanx |
| 1+tan2x |
2-2(-
| ||
1+(-
|
| 20 |
| 13 |
(2)f(x)=(
| a |
| b |
| b |
=
| a |
| b |
| b |
| 3 |
| 2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1+cos2x |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
∵x∈[-
| π |
| 2 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
∴sin(2x+
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
∴当sin(2x+
| π |
| 4 |
| ||
| 2 |
| a |
| b |
| b |
| 1 |
| 2 |
点评:本题考查平面向量与三角函数的综合应用,熟练掌握公式是解决问题的关键,属中档题.
练习册系列答案
相关题目
设集合M={x|y=
,x∈R},集合N={y|y=x2,x∈R},则M∩N=( )
| x-2 |
| A、∅ | B、N | C、[0,+∞) | D、M |