题目内容
19.在△ABC中,内角A,B,C的对边分别是a,b,c,则a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB则C=( )| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 运用正弦定理可得c=$\sqrt{3}$b,代入已知可得a=2b,再由余弦定理可得所求角C.
解答 解:在△ABC中,因为a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB,
由正弦定理可得c=$\sqrt{3}$b,
所以a=2b,
由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{b}^{2}+{b}^{2}-3{b}^{2}}{2•2b•b}$=$\frac{1}{2}$,
由0°<C<180°,
可得C=60°,
故选:B.
点评 本题考查正弦定理、余弦定理的运用,考查运算能力,属于基础题.
练习册系列答案
相关题目
4.
某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
| 是否 优良 班级 | 优良 (人数) | 非优良 (人数) | 合计 |
| 甲 | |||
| 乙 | |||
| 合计 |
| P(K2≥k) | 0.10 | 0.05 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
11.随着手机使用的不断普及,现在全国各地的中小学生携带手机进入校园已经成为了普遍的现象,也引起了一系列的问题.然而,是堵还是疏,就摆在了我们学校老师的面前.某研究型学习小组调查研究“中学生使用手机对学习的影响”,部分统计数据如下表:
参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.
| 不使用手机 | 使用手机 | 合计 | |
| 学习成绩优秀人数 | 18 | 7 | 25 |
| 学习成绩不优秀人数 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.
8.若z=1-i,则$\frac{1-z\overline z}{i}$=( )
| A. | -i | B. | i | C. | 1 | D. | -1 |