题目内容
8.在等比数列{an}中,a2•a3是a12和a42的等差中项,则$\frac{{S}_{6}}{{S}_{3}}$=( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 a2•a3是a12和a42的等差中项,可得2a2•a3=a12+a42,2q3=1+q6,解得q.即可得出.
解答 解:∵a2•a3是a12和a42的等差中项,∴2a2•a3=a12+a42,∴2q3=1+q6,解得q3=1,解得q=1.
$\frac{{S}_{6}}{{S}_{3}}$=$\frac{6{a}_{1}}{3{a}_{1}}$=2,
故选:B.
点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
16.在直三棱柱ABC-A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
3.已知角α的终边与单位圆交于点(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),则sin2α的值为( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
13.宿州市日前提出,要提升市民的生活质量,改善民生,促进“中国梦”的实线,为此,某记者在街头随机采访了100名市民,根据他们对“中国梦”实线的信心情况进行统计分析,得到如下分布表:
(Ⅰ)以这100名市民信心指数为样本来估计市民的总体信心指数,若要从全市市民中随机任选3人进行信心跟踪,记ξ表示抽到信心级别为“非常有信心或有信心”市民人数,求ξ的分布列及期望;
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.
| 信心级别 | 非常有信心 | 有信心 | 不知道 | 没信心 |
| 信心指数(分数) | 90 | 60 | 30 | 6 |
| 人数(名) | 42 | 38 | 14 | 6 |
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.
20.执行如图所示的程序框图,则输出S的值为( )

| A. | 16 | B. | 32 | C. | 64 | D. | 1024 |
17.设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若|MF|=4,则直线l的方程为( )
| A. | $y=2\sqrt{2}x+1$ | B. | $y=\sqrt{3}x+1$ | C. | $y=\sqrt{2}x+1$ | D. | $y=2\sqrt{3}x+2$ |