题目内容
已知数列{an}是公差不为零的等差数列,a1=1,且2a2+2=a4.
(1)求数列{an}的通项公式an;
(2)设bn=
,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式an;
(2)设bn=
| 1 |
| anan+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差,由题意求得公差,则等差数列的通项公式可求;
(2)把等差数列的通项公式代入bn=
,然后利用裂项相消法求数列的前n项和.
(2)把等差数列的通项公式代入bn=
| 1 |
| anan+1 |
解答:
解:(1)设等差数列{an}的公差为d(d≠0),
由a1=1,且2a2+2=a4,得2(1+d)+2=1+3d,
解得:d=3.
∴an=1+3(n-1)=3n-2;
(2)由bn=
,得
bn=
=
(
-
),
∴数列{bn}的前n项和Sn=
(
-
+
-
+…+
-
)
=
(1-
)=
.
由a1=1,且2a2+2=a4,得2(1+d)+2=1+3d,
解得:d=3.
∴an=1+3(n-1)=3n-2;
(2)由bn=
| 1 |
| anan+1 |
bn=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴数列{bn}的前n项和Sn=
| 1 |
| 3 |
| 1 |
| 1 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目