题目内容
设数列{an}的前n项和为Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,a5成等比数列,当n≥5时,an>0.
(1)求证:当n≥5时 {an}成等差数列;
(2)求{an}的前n项和Sn.
(1)求证:当n≥5时 {an}成等差数列;
(2)求{an}的前n项和Sn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)当n≥5时,an=Sn-Sn-1=
(an2+2an-an-12-2an-1),从而an2-an-12=2an+2an-1,进而an-an-1=2,由此能证明当n≥5时,{an}成等差数列.
(2)由已知推导出a1=3,a2=-3,a3=3,a4=-3,a5=3,当n≥5时,an=3+(n-5)×2=2n-7,从而当1≤n≤5时,Sn=3×
=
[1-(-1)n].当n>5时,Sn=3+2×
-7(n-5)-2×
=n2-6n+5.
| 1 |
| 4 |
(2)由已知推导出a1=3,a2=-3,a3=3,a4=-3,a5=3,当n≥5时,an=3+(n-5)×2=2n-7,从而当1≤n≤5时,Sn=3×
| 1-(-1)n |
| 1-(-1) |
| 3 |
| 2 |
| n(n+1) |
| 2 |
| 5(5+1) |
| 2 |
解答:
(1)证明:当n≥5时,Sn=
(an2+2an-3),
an=Sn-Sn-1=
(an2+2an-an-12-2an-1),
∴an2-an-12=2an+2an-1,
∴(an+an-1)(an-an-1)=2(an+an-1),
∵当n≥5时,an>0,∴an+an-1≠0,
∴an-an-1=2,
∴当n≥5时 {an}成等差数列.
(2)解:∵当n≥5时,an>0,∴a5>0,
∵4Sn=an2+2an-3,且a1,a2,a3,a4,a5成等比数列,
∴a1,a5同号,∴a1>0,
4a1=a12+2a1-3,解得a1=3或a1=-1(舍),
3+a2=S2=
(a22+2a2-3),
解得a2=5或a2=-3,
当a2=5时,同理,得a3=-5或a3=7,
由a1,a2,a3,a4,a5成等比数列,
得a3=
=
,矛盾,故a2≠5,
当a2=-3时,得a3=3,或a3=-1,
由a1,a2,a3,a4,a5成等比数列,
得a3=
=
=3,
综上,a1=3,a2=-3,a3=3,a4=-3,a5=3,
由(1)知当n≥5时,{an}成首项为3公差为2的等差数列,
即an=3+(n-5)×2=2n-7,
∴an=
.
∴当1≤n≤5时,Sn=3×
=
[1-(-1)n].
当n>5时,Sn=3+2×
-7(n-5)-2×
=n2-6n+5.
∴Sn=
.
| 1 |
| 4 |
an=Sn-Sn-1=
| 1 |
| 4 |
∴an2-an-12=2an+2an-1,
∴(an+an-1)(an-an-1)=2(an+an-1),
∵当n≥5时,an>0,∴an+an-1≠0,
∴an-an-1=2,
∴当n≥5时 {an}成等差数列.
(2)解:∵当n≥5时,an>0,∴a5>0,
∵4Sn=an2+2an-3,且a1,a2,a3,a4,a5成等比数列,
∴a1,a5同号,∴a1>0,
4a1=a12+2a1-3,解得a1=3或a1=-1(舍),
3+a2=S2=
| 1 |
| 4 |
解得a2=5或a2=-3,
当a2=5时,同理,得a3=-5或a3=7,
由a1,a2,a3,a4,a5成等比数列,
得a3=
| a22 |
| a1 |
| 25 |
| 3 |
当a2=-3时,得a3=3,或a3=-1,
由a1,a2,a3,a4,a5成等比数列,
得a3=
| a22 |
| a1 |
| 9 |
| 3 |
综上,a1=3,a2=-3,a3=3,a4=-3,a5=3,
由(1)知当n≥5时,{an}成首项为3公差为2的等差数列,
即an=3+(n-5)×2=2n-7,
∴an=
|
∴当1≤n≤5时,Sn=3×
| 1-(-1)n |
| 1-(-1) |
| 3 |
| 2 |
当n>5时,Sn=3+2×
| n(n+1) |
| 2 |
| 5(5+1) |
| 2 |
∴Sn=
|
点评:本题考查等差数列的证明,考查数列的前n项和的求法,是难题,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关题目
若函数f(x)=
,则f(f(e))=( )(其中e为自然对数的底数)
|
| A、1 | B、2 | C、e | D、5 |