题目内容
在△ABC中,bc=b2-a2,且B-A=80°,则内角C的余弦值为( )
| A、1 | ||
B、
| ||
C、
| ||
D、
|
考点:余弦定理,两角和与差的正弦函数
专题:综合题,解三角形
分析:先利用正弦定理,结合和差化积公式,可得2B-A=180°,再利用B-A=80°,求出C,即可求出内角C的余弦值.
解答:
解:∵bc=b2-a2,
∴sinBsinC=sin2B-sin2A,
∴sinBsinC=(sinB+sinA)(sinB-sinA),
∴sinBsinC=4sin
cos
cos
sin
=sinCsin(B-A),
∴sinB=sin(B-A),
∴2B-A=180°,
∵B-A=80°,
∴B=100°,A=20°,
∴C=60°,
∴cosC=
.
故选:C.
∴sinBsinC=sin2B-sin2A,
∴sinBsinC=(sinB+sinA)(sinB-sinA),
∴sinBsinC=4sin
| B+A |
| 2 |
| B-A |
| 2 |
| B+A |
| 2 |
| B-A |
| 2 |
∴sinB=sin(B-A),
∴2B-A=180°,
∵B-A=80°,
∴B=100°,A=20°,
∴C=60°,
∴cosC=
| 1 |
| 2 |
故选:C.
点评:本题考查正弦定理,和差化积公式,解题的关键是确定2B-A=180°.
练习册系列答案
相关题目
假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天的回报比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报是前一天的两倍.
若投资的时间为8~10天,为使投资的回报最多,你会选择哪种方案投资?( )
方案一:每天回报40元;
方案二:第一天回报10元,以后每天的回报比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报是前一天的两倍.
若投资的时间为8~10天,为使投资的回报最多,你会选择哪种方案投资?( )
| A、方案一 | B、方案二 |
| C、方案三 | D、都可以 |
在△ABC中,若
=1,则∠C的大小为( )
| c2-a2 |
| b2+ab |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合A={y∈R|y=2014x},B={y∈R|x2+y2=4},则A∩B等于( )
A、{(-
| ||||||||
| B、R | ||||||||
| C、{y|-2≤y≤2} | ||||||||
| D、∅ |
如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2s末的瞬时速度为( )
| A、-4.8m/s |
| B、-2.8m/s |
| C、0.88 m/s |
| D、4.8 m/s |
将函数f(x)=2sin(2x-
)的图象向左平移
个单位后,所得图象的一个对称中心是( )
| π |
| 3 |
| π |
| 6 |
A、(
| ||
B、(
| ||
C、(
| ||
D、(
|
若在△ABC中,有sin
=cosA,则△ABC一定是( )
| C |
| 2 |
| A、锐角三角形 |
| B、钝角三角形 |
| C、直角三角形 |
| D、等腰三角形 |