题目内容

数列{an}满足a1=2,3(an-1)(an-an+1)=(an-1)(an+1-1)(n∈N+).
(1)证明:数列{an-1}是等比数列;
(2)设bn=nan+
1-an
anan+1
(n∈N+),求数列{bn}的前n项和Sn
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由已知得(an-1)(3an-4an+1+1)=0,再由a1=2,得an+1-1=
3
4
an+
1
4
-1
=
3
4
(an-1)
,a1-1=1,由此能证明数列{an-1}是首项为1,公比为
3
4
的等比数列.
(2)由an-1=(
3
4
)n-1
,得bn=nan+
1-an
anan+1
=n(
3
4
n-1+4[
1
(
3
4
)n-1+1
-
1
(
3
4
)n+1
],由此利用分组求和法、裂项求和法以及错位相减法能求出数列{bn}的前n项和Sn
解答: (1)证明:∵数列{an}满足a1=2,3(an-1)(an-an+1)=(an-1)(an+1-1)(n∈N+),
∴(an-1)(3an-4an+1+1)=0,
解得an=1或3an-4an+1+1=0,
又a1=2,∴an≠1,
an+1-1=
3
4
an+
1
4
-1
=
3
4
(an-1)

又a1-1=1,
∴数列{an-1}是首项为1,公比为
3
4
的等比数列.
(2)解:由(1)知an-1=(
3
4
)n-1
,∴an=(
3
4
)n-1+1

bn=nan+
1-an
anan+1
=n(
3
4
n-1+4[
1
(
3
4
)n-1+1
-
1
(
3
4
)n+1
],
Sn=(1•a1+
1-a1
a1a2
)+(2a2+
1-a2
a2a3
)
+…+(nan+
1-an
anan+1
)

=1•(
3
4
)0+2•(
3
4
)+…+n•(
3
4
)n-1
+(1+2+3+…+n)+4[
1
2
-
4
7
+
4
7
-
16
25
+…+
1
(
3
4
)n-1+1
-
1
(
3
4
)n+1
]
=1•(
3
4
)0+2•(
3
4
)+…+n•(
3
4
)n-1
+
n(n+1)
2
+4(
1
2
-
1
(
3
4
)n+1
),
设Tn=1•(
3
4
)0+2•(
3
4
)+…+n•(
3
4
)n-1
,①
3
4
Tn
=1•(
3
4
)+2•(
3
4
)2+…+n•(
3
4
)n
,②
①-②,得
1
4
Tn=1+
3
4
+(
3
4
)2
+…+(
3
4
)n-1
-n•(
3
4
n
=
1-(
3
4
)n
1-
3
4
-n•(
3
4
n
=4-4(
3
4
n-n•(
3
4
n
∴Tn=16-(16+n)(
3
4
n
∴Sn=16-(16+n)(
3
4
n+
n(n+1)
2
+4(
1
2
-
1
(
3
4
)n+1

=18-(16+n)(
3
4
n+
n(n+1)
2
-
4
(
3
4
)n+1
点评:本题考查等比数列的证明,考查数列的前n项和的求法,是中档题,解题时要注意分组求和法、裂项求和法以及错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网