题目内容
数列{an}满足a1=2,3(an-1)(an-an+1)=(an-1)(an+1-1)(n∈N+).
(1)证明:数列{an-1}是等比数列;
(2)设bn=nan+
(n∈N+),求数列{bn}的前n项和Sn.
(1)证明:数列{an-1}是等比数列;
(2)设bn=nan+
| 1-an |
| anan+1 |
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由已知得(an-1)(3an-4an+1+1)=0,再由a1=2,得an+1-1=
an+
-1=
(an-1),a1-1=1,由此能证明数列{an-1}是首项为1,公比为
的等比数列.
(2)由an-1=(
)n-1,得bn=nan+
=n(
)n-1+4[
-
],由此利用分组求和法、裂项求和法以及错位相减法能求出数列{bn}的前n项和Sn.
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
(2)由an-1=(
| 3 |
| 4 |
| 1-an |
| anan+1 |
| 3 |
| 4 |
| 1 | ||
(
|
| 1 | ||
(
|
解答:
(1)证明:∵数列{an}满足a1=2,3(an-1)(an-an+1)=(an-1)(an+1-1)(n∈N+),
∴(an-1)(3an-4an+1+1)=0,
解得an=1或3an-4an+1+1=0,
又a1=2,∴an≠1,
∴an+1-1=
an+
-1=
(an-1),
又a1-1=1,
∴数列{an-1}是首项为1,公比为
的等比数列.
(2)解:由(1)知an-1=(
)n-1,∴an=(
)n-1+1,
bn=nan+
=n(
)n-1+4[
-
],
Sn=(1•a1+
)+(2a2+
)+…+(nan+
)
=1•(
)0+2•(
)+…+n•(
)n-1+(1+2+3+…+n)+4[
-
+
-
+…+
-
]
=1•(
)0+2•(
)+…+n•(
)n-1+
+4(
-
),
设Tn=1•(
)0+2•(
)+…+n•(
)n-1,①
则
Tn=1•(
)+2•(
)2+…+n•(
)n,②
①-②,得
Tn=1+
+(
)2+…+(
)n-1-n•(
)n
=
-n•(
)n
=4-4(
)n-n•(
)n,
∴Tn=16-(16+n)(
)n,
∴Sn=16-(16+n)(
)n+
+4(
-
)
=18-(16+n)(
)n+
-
.
∴(an-1)(3an-4an+1+1)=0,
解得an=1或3an-4an+1+1=0,
又a1=2,∴an≠1,
∴an+1-1=
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
又a1-1=1,
∴数列{an-1}是首项为1,公比为
| 3 |
| 4 |
(2)解:由(1)知an-1=(
| 3 |
| 4 |
| 3 |
| 4 |
bn=nan+
| 1-an |
| anan+1 |
| 3 |
| 4 |
| 1 | ||
(
|
| 1 | ||
(
|
Sn=(1•a1+
| 1-a1 |
| a1a2 |
| 1-a2 |
| a2a3 |
| 1-an |
| anan+1 |
=1•(
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 4 |
| 7 |
| 4 |
| 7 |
| 16 |
| 25 |
| 1 | ||
(
|
| 1 | ||
(
|
=1•(
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| n(n+1) |
| 2 |
| 1 |
| 2 |
| 1 | ||
(
|
设Tn=1•(
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
则
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
①-②,得
| 1 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
=
1-(
| ||
1-
|
| 3 |
| 4 |
=4-4(
| 3 |
| 4 |
| 3 |
| 4 |
∴Tn=16-(16+n)(
| 3 |
| 4 |
∴Sn=16-(16+n)(
| 3 |
| 4 |
| n(n+1) |
| 2 |
| 1 |
| 2 |
| 1 | ||
(
|
=18-(16+n)(
| 3 |
| 4 |
| n(n+1) |
| 2 |
| 4 | ||
(
|
点评:本题考查等比数列的证明,考查数列的前n项和的求法,是中档题,解题时要注意分组求和法、裂项求和法以及错位相减法的合理运用.
练习册系列答案
相关题目
已知实数x、y满足条件
,若
最大值为4,则
的最小值为( )
|
| y |
| x |
| y |
| x |
| A、-1 | B、2 | C、3 | D、4 |
已知等差数列{an}的前n项和为Sn(n∈N*),若S9=9,Tn为数列{
}的前n项和,则T17=( )
| Sn |
| n |
| A、9 | B、17 | C、26 | D、153 |
已知复数z=(a-1)+i,若z是纯虚数,则实数a等于( )
| A、2 | B、-1 | C、0 | D、1 |
从集合A={xI1≤x≤10,x∈N}中选出5个数组成A的子集,且这5个数中的任意2个数的和不等于12,则这样的子集个数( )
| A、24 | B、32 | C、64 | D、48 |
已知全集U=R,集合A={x∈Z|y=
},B={x|x>6},则A∩(CUB)=( )
| x-4 |
| A、[4,6] |
| B、[4,6) |
| C、{4,5,6} |
| D、{4,5} |