题目内容

5.已知函数f(x)=$\frac{9}{8cos2x+16}$-sin2x,则当f(x)取最小值时cos2x的值为$-\frac{1}{2}$.

分析 利用二倍角公式化简函数的表达式,利用基本不等式求解表达式的最值即可.

解答 解:函数f(x)=$\frac{9}{8cos2x+16}$-sin2x=$\frac{\frac{9}{8}}{cos2x+2}$+$\frac{cos2x+2}{2}$-$\frac{3}{2}$,∵cos2x+2>0,
∴f(x)≥2$\sqrt{\frac{\frac{9}{8}}{cos2x+2}•\frac{cos2x+2}{2}}$$-\frac{3}{2}$=2×$\frac{3}{4}-\frac{3}{2}$=0,
当且仅当$\frac{\frac{9}{8}}{cos2x+2}$=$\frac{cos2x+2}{2}$,即cos2x=-$\frac{1}{2}$时等号成立.
故答案为:-$\frac{1}{2}$.

点评 本题考查基本不等式在最值中的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网