题目内容
10.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲线y=f(x)在点(0,1)处的切线斜率为-3.(1)求f(x)单调区间;
(2)求f(x)的极值.
分析 (1)求出函数的导数,根据f′(0)=-3,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值即可.
解答 解:(1)f′(x)=x2+2x+a,由f′(0)=-3,解得:a=-3,
故f(x)=$\frac{1}{3}$x3+x2-3x+1,f′(x)=(x+3)(x-1),
令f′(x)>0,解得:x>1或x<-3,
令f′(x)<0,解得:-3<x<1,
故f(x)在(-∞,-3)递增,在(-3,1)递减,在(1,+∞)递增;
(2)由(1)知f(x)极大值=f(-3)=10,
f(x)极小值=f(1)=-$\frac{2}{3}$.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
20.已知某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体 的表面积为( )

| A. | 4 | B. | 4+4$\sqrt{2}$ | C. | 8+4$\sqrt{2}$ | D. | 8+2$\sqrt{2}$ |
15.静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.
| 分组(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
| 频数(个) | 5 | 10 | 20 | 15 |
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.