题目内容
已知函数f(x)=sin(2x+
)+sin(2x-
)+2cos2x,(x∈R)
(1)求函数f(x)的单调递减区间;
(2)求使f(x)≥2的x的取值范围.
| π |
| 6 |
| π |
| 6 |
(1)求函数f(x)的单调递减区间;
(2)求使f(x)≥2的x的取值范围.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)利用两角和差的正弦公式、倍角公式可得f(x)=
sin(2x+
)+1.再利用正弦函数的单调性可得函数f(x)的单调递减区间.
(2)由f(x)≥2,即
sin(2x+
)+1≥2,化为sin(2x+
)≥
.再利用正弦函数的单调性即可得出.
| 2 |
| π |
| 4 |
(2)由f(x)≥2,即
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
解答:
解:(1)函数f(x)=sin(2x+
)+sin(2x-
)+2cos2x
=sin2xcos
+cos2xsin
+sin2xcos
-cos2xsin
+1+cos2x
=sin2x+cos2x+1
=
sin(2x+
)+1.
由2kπ+
≤2x+
≤2kπ+
,解得kπ+
≤x≤kπ+
(k∈Z).
∴函数f(x)的单调递减区间[kπ+
,kπ+
](k∈Z).
(2)由f(x)≥2,即
sin(2x+
)+1≥2,化为sin(2x+
)≥
.
∴2kπ+
≤2x+
≤2kπ+
,解得kπ≤x≤kπ+
(k∈Z).
∴使f(x)≥2的x的取值范围是[kπ,kπ+
](k∈Z).
| π |
| 6 |
| π |
| 6 |
=sin2xcos
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=sin2x+cos2x+1
=
| 2 |
| π |
| 4 |
由2kπ+
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 8 |
| 5π |
| 8 |
∴函数f(x)的单调递减区间[kπ+
| π |
| 8 |
| 5π |
| 8 |
(2)由f(x)≥2,即
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
∴2kπ+
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
∴使f(x)≥2的x的取值范围是[kπ,kπ+
| π |
| 4 |
点评:本题考查了两角和差的正弦公式、倍角公式、正弦函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目