题目内容
9.若中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y=±$\sqrt{2}$x,则该双曲线的离心率为( )| A. | $\sqrt{3}$或$\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{2}$或3 | C. | $\sqrt{3}$ | D. | 3 |
分析 讨论双曲线的焦点在x或y轴上,求得渐近线方程,可得b=$\sqrt{2}$a或a=$\sqrt{2}$b,由a,b,c的关系和离心率公式计算即可得到所求值.
解答 解:当双曲线的焦点在x轴上,
由双曲线的方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
可得渐近线方程为y=±$\frac{b}{a}$x,
即有b=$\sqrt{2}$a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{3}$a,
则e=$\frac{c}{a}$=$\sqrt{3}$;
当双曲线的焦点在y轴上,
由双曲线的方程$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a,b>0),
可得渐近线方程为y=±$\frac{a}{b}$x,
即有$\sqrt{2}$b=a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{6}}{2}$a,
则e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
综上可得e=$\sqrt{3}$或$\frac{\sqrt{6}}{2}$.
故选:A.
点评 本题考查双曲线的离心率的求法,注意讨论焦点的位置,考查渐近线方程与双曲线的方程的关系,考查运算能力,属于基础题.
练习册系列答案
相关题目
14.函数f(x)为定义在R上的奇函数,且在(0,+∞)上为增函数,f(3)=0,则不等式f(2x-1)≥0的解为( )
| A. | $[{-1,\frac{1}{2}})∪[{2,+∞})$ | B. | $[{-1,\frac{1}{2}}]∪({2,+∞})$ | C. | [2,+∞) | D. | $[{-1,\frac{1}{2}})$ |
18.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点F作一条渐近线的垂线,垂足为P,线段OP的垂直平分线交y轴于点Q(其中O为坐标原点).若△OFP的面积是△OPQ的面积的4倍,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |