题目内容
1.已知双曲线的标准方程为$\frac{x^2}{4}-\frac{y^2}{16}=1$,则该双曲线的焦点坐标为,(±$2\sqrt{5}$,0)渐近线方程为y=±2x.分析 求出双曲线的a,b,c,即可得到焦点坐标;由渐近线方程为y=±$\frac{b}{a}$x,可得所求渐近线方程.
解答 解:双曲线$\frac{x^2}{4}-\frac{y^2}{16}=1$的a=2,b=4,
c=$\sqrt{{a}^{2}+{b}^{2}}$=2$\sqrt{5}$,
可得焦点的坐标为(±$2\sqrt{5}$,0),
渐近线方程为y=±$\frac{b}{a}$x,即为y=±2x.
故答案为:(±$2\sqrt{5}$,0),y=±2x.
点评 本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
练习册系列答案
相关题目
15.数y=cosx在[-$\frac{π}{3}$,$\frac{π}{3}$]的值域是( )
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,1] | C. | [$\frac{1}{2}$,1] | D. | [-$\frac{1}{2}$,0] |
9.若中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y=±$\sqrt{2}$x,则该双曲线的离心率为( )
| A. | $\sqrt{3}$或$\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{2}$或3 | C. | $\sqrt{3}$ | D. | 3 |
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点是F(-c,0),离心率为e,过点F且与双曲线的一条渐近线平行的直线与圆x2+y2=c2在y轴右侧交于点P,若P在抛物线y2=2cx上,则e2=( )
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+1}}{2}$ | C. | $\sqrt{5}-1$ | D. | $\sqrt{2}$ |
6.已知F是双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦点,点P的坐标为(3,1),点A在双曲线上,则|AP|+|AF|的最小值为( )
| A. | $\sqrt{37}$+4 | B. | $\sqrt{37}$-4 | C. | $\sqrt{37}$-2$\sqrt{5}$ | D. | $\sqrt{37}$+2$\sqrt{5}$ |
10.已知双曲线的离心率e=$\frac{5}{3}$,点(0,5)为其一个焦点,则该双曲线的标准方程为( )
| A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{25}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 |