题目内容
17.已知成等比数列的三个数的积为27,和为13,求这三个数.分析 由题意可设这三个数为:$\frac{3}{q}$,3,3q,由和为13可得q的方程,解方程代入可得.
解答 解:∵成等比数列的三个数的积为27,
∴可设这三个数为:$\frac{3}{q}$,3,3q,
又∵这三个数的和为13,
∴$\frac{3}{q}$+3+3q=13,解得q=3或q=$\frac{1}{3}$,
分别代入计算可得这三个数为:1,3,9或9,3,1
点评 本题考查等差数列和等比数列的通项公式和性质,属基础题.
练习册系列答案
相关题目
8.
某生产车间为了检测其加工的零件的质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测指标评分大于60分的零件为合格零件,指标评分不超过40分的零件将直接被淘汰,指标评分在(40,60]内的零件可能被修复也可能被淘汰.现质检员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示,
(1)求出频率分布直方图中a的值;
(2)估计这200个零件指标评分的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如下表:
假设每个零件被修复与否相互独立.现有3个零件的检测指标评分(单位:分)为:38,45,52,
①求这3个零件中,至多有2个不被修复而淘汰的概率;
②记这3个零件被修复的个数为随机变量X,求X的分布列和数学期望.
(1)求出频率分布直方图中a的值;
(2)估计这200个零件指标评分的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如下表:
| 零件检测指标评分所在区间 | (40,50] | (50,60] |
| 每个零件个体被修复的概率 | $\frac{1}{3}$ | $\frac{1}{2}$ |
①求这3个零件中,至多有2个不被修复而淘汰的概率;
②记这3个零件被修复的个数为随机变量X,求X的分布列和数学期望.
12.已知f(x)为奇函数,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,方程f(x)=a(0<a<1)的所有实数根之和为( )
| A. | 1-2a | B. | 2a-1 | C. | ($\frac{1}{2}$)a-1 | D. | 1-($\frac{1}{2}$)a |