题目内容

已知公差不为0的等差数列{an}的前n项和为Sn,S7=70,且a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2n•an,求数列{bn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用已知条件列出方程,求出数列的首项与公差,然后求数列{an}的通项公式;
(2)化简bn=2n•an,利用错位相减法,直接求数列{bn}的前n项和Tn
解答: 解:(1)设公差为d(d≠0),由S7=70,且a1,a2,a6成等比数列得,7a1+21d=70,(a1+d)2=a1(a1+5d)(d≠0)
解得a1=1,d=3,∴an=3n-2….(6分)
(2)由(1),Tn=1×2+4×22+7×23+…+(3n-5)•2n-1+(3n-2)•2n2Tn=1×22+4×23+7×24+…+(3n-5)•2n+(3n-2)•2n+1
相减得,-Tn=2+3×22+3×23+…3•2n-(3n-2)•2n+1
=2+
12(1-2n-1)
1-1
-(3n-2)•2n+1

=(5-3n)•2n+1-10
Tn=(3n-5)•2n+1+10…(12分)
点评:本题考查干错事了的通项公式的求法,错位相减法的应用,考查数列求和方法的应用,基本知识与基本方法的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网