题目内容
设a1,a2,a3均为正数,λ1<λ2<λ3,则函数f(x)=
+
+
的两个零点分别位于区间( )
| a1 |
| x-λ1 |
| a2 |
| x-λ2 |
| a3 |
| x-λ3 |
| A、(-∞,λ1)∪(λ1,λ2)内 |
| B、(λ1,λ2)∪(λ2,λ3)内 |
| C、(λ2,λ3)∪(λ3,+∞)内 |
| D、(-∞,λ1)∪(λ3,+∞)内 |
考点:函数零点的判定定理,利用导数研究函数的单调性
专题:函数的性质及应用
分析:整理函数f(x),令g(x)=a1(x-λ2)(x-λ3)+a2(x-λ1)(x-λ3)+a3(x-λ1)(x-λ2),由函数零点存在判定定理可知:在区间(λ1,λ2),(λ2,λ3)内分别存在一个零点;又函数g(x)是二次函数,最多有两个零点,即可判断出.
解答:
解:f(x)=
+
+
=
令g(x)=a1(x-λ2)(x-λ3)+a2(x-λ1)(x-λ3)+a3(x-λ1)(x-λ2),
∵λ1<λ2<λ3,
∴g(λ1)=a1(λ1-λ2)(λ1-λ3)>0,
g(λ2)=a2(λ2-λ1)(λ2-λ3)<0,
g(λ3)=a3(λ3-λ1)(λ3-λ2)>0,
由函数零点存在判定定理可知:在区间(λ1,λ2),(λ2,λ3)内分别存在一个零点;
又函数g(x)是二次函数,最多有两个零点,
因此函数g(x)的两个零点分别位于区间(λ1,λ2),(λ2,λ3)内.
故函数f(x)=
+
+
的两个零点分别位于区间(λ1,λ2),(λ2,λ3)内.
故选:B.
| a1 |
| x-λ1 |
| a2 |
| x-λ2 |
| a3 |
| x-λ3 |
=
| a1(x-λ2)(x-λ3)+a2(x-λ1)(x-λ3)+a3(x-λ1)(x-λ2) |
| (x-λ1)(x-λ2)(x-λ3) |
令g(x)=a1(x-λ2)(x-λ3)+a2(x-λ1)(x-λ3)+a3(x-λ1)(x-λ2),
∵λ1<λ2<λ3,
∴g(λ1)=a1(λ1-λ2)(λ1-λ3)>0,
g(λ2)=a2(λ2-λ1)(λ2-λ3)<0,
g(λ3)=a3(λ3-λ1)(λ3-λ2)>0,
由函数零点存在判定定理可知:在区间(λ1,λ2),(λ2,λ3)内分别存在一个零点;
又函数g(x)是二次函数,最多有两个零点,
因此函数g(x)的两个零点分别位于区间(λ1,λ2),(λ2,λ3)内.
故函数f(x)=
| a1 |
| x-λ1 |
| a2 |
| x-λ2 |
| a3 |
| x-λ3 |
故选:B.
点评:本题主要考查函数的零点的判定定理的应用,根据函数的解析式求函数的值,判断函数的零点所在的区间的方法,属于基础题.
练习册系列答案
相关题目
已知a∈R,若
为实数,则a=( )
| 1+ai |
| 2-i |
| A、2 | ||
| B、-2 | ||
C、-
| ||
D、
|
已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.
(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);
(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).
则( )
(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);
(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).
则( )
| A、p1>p2,E(ξ1)<E(ξ2) |
| B、p1<p2,E(ξ1)>E(ξ2) |
| C、p1>p2,E(ξ1)>E(ξ2) |
| D、p1<p2,E(ξ1)<E(ξ2) |
A、8-4
| ||
| B、2 | ||
C、2
| ||
D、1+2
|
若不等式lg
≥(x-1)lg3对任意x∈(-∞,1)恒成立,则a的取值范围是( )
| 1+2x+(1-a)3x |
| 3 |
| A、(-∞,0] |
| B、[1,+∞) |
| C、[0,+∞) |
| D、(-∞,1] |