题目内容
已知数列{cn}满足c1=1,cn+1=
cn,则数列c5= ,通项cn= ;若bn=2cncn+1,则数列{bn}的前50项和为 .
| n |
| n+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:c1=1,cn+1=
cn,可得
=
,c2=
.利用“累乘求积”可得cn,可得bn=2cncn+1=
=2(
-
).再利用“裂项求和”即可得出.
| n |
| n+1 |
| cn+1 |
| cn |
| n |
| n+1 |
| 1 |
| 2 |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:∵c1=1,cn+1=
cn,
∴
=
,c2=
.
∴当n≥2时,cn=
×
×…×
×c2
=
×
×…×
×
=
.
当n=1时,上式也成立.
∴cn=
.
∴c5=
,cn=
.
∴bn=2cncn+1=
=2(
-
).
∴数列{bn}的前50项和=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)
=
.
故答案分别为:
;
;
.
| n |
| n+1 |
∴
| cn+1 |
| cn |
| n |
| n+1 |
| 1 |
| 2 |
∴当n≥2时,cn=
| cn |
| cn-1 |
| cn-1 |
| cn-2 |
| c3 |
| c2 |
=
| n-1 |
| n |
| n-2 |
| n-1 |
| 2 |
| 3 |
| 1 |
| 2 |
=
| 1 |
| n |
当n=1时,上式也成立.
∴cn=
| 1 |
| n |
∴c5=
| 1 |
| 5 |
| 1 |
| n |
∴bn=2cncn+1=
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{bn}的前50项和=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 50 |
| 1 |
| 51 |
=2(1-
| 1 |
| 51 |
=
| 100 |
| 51 |
故答案分别为:
| 1 |
| 5 |
| 1 |
| n |
| 100 |
| 51 |
点评:本题考查了“裂项求和”、“累乘求积”方法,考查了变形能力,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目