题目内容

9.在△ABC中,A、B、C的对边分别为a,b,c,3sinAcosB+bsinAcosA=3sinC(A≠$\frac{π}{2}$).
(I)求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,求△ABC周长的最大值.

分析 (I)由已知式子和三角函数公式可得bsinA=3sinB,由正弦定理可得a=$\frac{bsinA}{sinB}$=3;
(Ⅱ)由A=$\frac{2π}{3}$可得C=$\frac{π}{3}$-B,B∈(0,$\frac{π}{3}$),由正弦定理可得b和c,可得△ABC周长,由三角函数的最值可得.

解答 解:(I)∵在△ABC中3sinAcosB+bsinAcosA=3sinC,
∴3sinAcosB+bsinAcosA=3sin(A+B),
∴3sinAcosB+bsinAcosA=3sinAcosB+3cosAsinB,
∴bsinAcosA=3cosAsinB,∵A≠$\frac{π}{2}$,∴cosA≠0,
两边同除以cosA可得bsinA=3sinB,
∴由正弦定理可得a=$\frac{bsinA}{sinB}$=3;
(Ⅱ)∵A=$\frac{2π}{3}$,∴C=$\frac{π}{3}$-B,B∈(0,$\frac{π}{3}$),
由正弦定理可得b=$\frac{asinB}{sinA}$=2$\sqrt{3}$sinB,c=$\frac{asinC}{sinA}$=2$\sqrt{3}$sinC,
∴△ABC周长为3+2$\sqrt{3}$sinB+2$\sqrt{3}$sinC=3+2$\sqrt{3}$sinB+2$\sqrt{3}$sin($\frac{π}{3}$-B)
=3+2$\sqrt{3}$sinB+2$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosB-$\frac{1}{2}$sinB)
=3+2$\sqrt{3}$sinB+3cosB-$\sqrt{3}$sinB
=3+$\sqrt{3}$sinB+3cosB
=3+2$\sqrt{3}$($\frac{1}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB)
=3+2$\sqrt{3}$sin(B+$\frac{π}{3}$)
∵B∈(0,$\frac{π}{3}$),∴B+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),
∴当B+$\frac{π}{3}$=$\frac{π}{2}$即B=$\frac{π}{6}$时,三角形的周长取最大值3+2$\sqrt{3}$.

点评 本题考查正余弦定理解三角形,涉及和差角的三角函数公式和三角函数的最值,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网