题目内容
由1开始的奇数列,按下列方法分组:(1),(3,5),(7,9,11),…,第n组有n个数,则第n组的首项为( )
A.n2-n B.n2-n+1
C.n2+n D.n2+n+1
B
已知△ABC中,=a,=b,a·b<0,S△ABC=,|a|=3,|b|=5,则∠BAC等于( )
A.30° B.120°
C.150° D.30°或150°
如图,△ABC的外接圆的圆心为O,AB=3,AC=5,BC=,则等于( )
A.-8 B.-1 C.1 D.8
已知x与函数f(x)的对应关系如下表所示,数列{an}满足:a1=3,an+1=f(an),则a2014=( )
x
1
2
3
f(x)
A.3 B.2 C.1 D.不确定
正项数列{an}满足:a-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.
已知数列{an}的前n项和为Sn,且Sn=an-1(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{bn}中,b1=5,bn+1=bn+an,求数列{bn}的通项公式.
已知等差数列{an}的前n项和为Sn,若a3+a4+a5=12,则S7的值为( )
A.28 B.42 C.56 D.14
已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足Sn-Sn-1=2 (n∈N*且n≥2),则a81=( )
A.641 B.640 C.639 D.638
已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.