题目内容
3.已知函数fn(x)=$\frac{n{x}^{2}-ax}{{x}^{2}+1}$(n∈N*)的图象在原点处的切线的倾斜角为135°.(1)求f1(x)的单调区间;
(2)设x1,x2,…,xn为正实数,且$\sum_{i=1}^{n}$xi=1,求证:fn(x1)+fn(x2)+…+fn(xn)≥0.
分析 (1)求出fn(x)的导数,求得切线的斜率,由切线方程可得a=1,求出f1(x)的导数,令导数大于0,可得增区间,令导数小于0,可得减区间;
(2)求出y=fn(x)在($\frac{1}{n}$,fn($\frac{1}{n}$))处的切线的方程,当0<x<1时,fn(x)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),运用累加法,即可得证.
解答 解:(1)fn(x)=$\frac{{nx}^{2}-ax}{{x}^{2}+1}$(n∈N*)的导数为f′n(x)=$\frac{{ax}^{2}+2nx-a}{{{(x}^{2}+1)}^{2}}$,
即有在点(0,fn(0))处的切线斜率为f′n(0)=-a=-1,
解得a=1,
f1(x)=$\frac{{x}^{2}-x}{{x}^{2}+1}$,f′1(x)=$\frac{{x}^{2}+2x-1}{{{(x}^{2}+1)}^{2}}$,
f′1(x)>0,解得x>$\sqrt{2}$-1或x<-1-$\sqrt{2}$;
f′1(x)<0,解得-1-$\sqrt{2}$<x<$\sqrt{2}$-1.
即有f1(x)的单调增区间为(-∞,-$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞),
单调减区间为(-1-$\sqrt{2}$,$\sqrt{2}$-1);
(2)证明:fn(x)=$\frac{{nx}^{2}-x}{{x}^{2}+1}$的导数为f′n(x)=$\frac{{x}^{2}+2nx-1}{{{(x}^{2}+1)}^{2}}$,
fn($\frac{1}{n}$)=0,f′n($\frac{1}{n}$)=$\frac{{n}^{2}}{{n}^{2}+1}$,
即有y=fn(x)在($\frac{1}{n}$,fn($\frac{1}{n}$))处的切线的方程为y=$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),
当0<x<1时,fn(x)-$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$)=$\frac{{nx}^{2}-x}{{x}^{2}+1}$-$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$)=$\frac{(n-x{)(nx-1)}^{2}}{{(x}^{2}+1){(n}^{2}+1)}$≥0,
即有fn(x)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),
xi>0(i=1,2,…,n),且x1+x2+…+xn=1,即有0<xi<1,i=1,2,…,n.
fn(xi)≥$\frac{{n}^{2}}{{n}^{2}+1}$(xi-$\frac{1}{n}$),
fn(x1)+fn(x2)+…+fn(xn)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x1-$\frac{1}{n}$+x2-$\frac{1}{n}$+…+xn-$\frac{1}{n}$)
即有fn(x1)+fn(x2)+…+fn(xn)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x1+x2+…+xn-$\frac{1}{n}$•n)=0,
综上可得fn(x1)+fn(x2)+…+fn(xn)≥0.
点评 本题考查导数的运用:求切线方程和单调区间、极值和最值,考查分类讨论的思想方法以及化简整理的运算能力和不等式的证明,属于中档题和易错题.
| A. | (1,+∞) | B. | [1,+∞) | C. | (0,+∞) | D. | [0,+∞) |
| A. | $({-∞,-\frac{1}{3}}]∪[{2,+∞}]$ | B. | $({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$ | C. | $({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$ | D. | $({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$ |
| A. | $({-∞,\frac{1}{4}}]$ | B. | $[{\frac{1}{4},+∞})$ | C. | $[{\frac{1}{2},+∞})$ | D. | $({-∞,\frac{1}{2}}]$ |