题目内容

14.如图,已知多面体EABCDF的底面是ABCD边长为2的正方形,EA⊥底面ABCD,FD∥EA,且FD=$\frac{1}{2}$EA=1.
(Ⅰ)记线段BC的中点为K,在平面ABCD内过点K作一条直线KM,使得KM∥平面ECF,并给予证明.
(Ⅱ)求点B到平面ECF的距离.

分析 (I)取线段CD的中点M,连接KM,直线KM即为所求.借助于KM∥BD∥FG给出证明;
(II)利用VE-DCF=VD-EFC=VA-FDC求出D到平面EFC的距离即可.

解答 解:(Ⅰ)取线段CD的中点M,
连接KM,直线KM即为所求.
证明如下:
取EC中点G,连接FG,连接AC交BD于O.
则OG为△EAC的中位线.
∴OG$\stackrel{∥}{=}$$\frac{1}{2}$EA,又FD$\stackrel{∥}{=}$$\frac{1}{2}$FA,
∴OG$\stackrel{∥}{=}$FD,
∴四边形FGOD为平行四边形,∴FG∥OD.
∵K,M分别为BC,CD的中点,
∴KM∥OD,∴KM∥FG.
∵FG?平面EFC,KM?平面EFC,
∴KM∥平面EFC.
(Ⅱ)由(Ⅰ)知,BD∥FG,又BD?平面EFC,FG?平面EFC,
∴BD∥平面EFC,
∴B到平面EFC的距离等于D到平面EFC的距离,设为h.
∵EA⊥平面ABCD,AD?平面ABCD,
∴EA⊥AD,又FD∥EA,
∴FD⊥AD,
又∵AD⊥CD,CD∩FD=D,
∴AD⊥平面DCF.
∴VE-DCF=VA-DCF=$\frac{1}{3}×\frac{1}{2}×2×1×2$=$\frac{2}{3}$,
在△ECF中,∵EF=FC=$\sqrt{5}$,∴FG⊥EC,
又FG=OD=$\frac{1}{2}$BD=$\sqrt{2}$,EC=$\sqrt{E{A}^{2}+A{C}^{2}}$=2$\sqrt{3}$,∴S△EFC=$\frac{1}{2}×2\sqrt{3}×\sqrt{2}$=$\sqrt{6}$.
∴VD-EFC=$\frac{1}{3}×\sqrt{6}×h$,
∵VE-DCF=VD-EFC,∴$\frac{\sqrt{6}h}{3}$=$\frac{2}{3}$,
解得h=$\frac{\sqrt{6}}{3}$.
∴B到平面EFC的距离为$\frac{\sqrt{6}}{3}$.

点评 本题考查了线面平行的判定,体积与空间距离的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网