题目内容
9.分析 由正方体的结构特征可知以B,C,D,B1为顶点的四边形符合条件.
解答 解:连结BD,B1,B1C,则三棱锥B1-BCD即为符合条件的一个三棱锥![]()
三棱锥的体积V=$\frac{1}{3}{S}_{△BCD}•B{B}_{1}$=$\frac{1}{3}×\frac{1}{2}×{1}^{2}×1=\frac{1}{6}$.
点评 本题考查了正方体的结构特征,棱锥的体积计算,属于基础题.
练习册系列答案
相关题目
20.在△ABC中,AB=2,AC=1,∠A=$\frac{2π}{3}$,过A作AD⊥BC于D,且$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λμ=( )
| A. | $\frac{10}{49}$ | B. | $\frac{5\sqrt{7}}{14}$ | C. | $\frac{9}{7}$ | D. | 1 |
17.函数y=2sin(ωx+φ)是偶函数,则φ可能等于( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为( )

| A. | $\frac{16}{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{64}{3}$ |
18.在等比数列{an}中,已知a4=27a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$等于( )
| A. | $\frac{{3}^{-n}-3}{2}$ | B. | $\frac{{3}^{1-n}-3}{2}$ | C. | $\frac{{3}^{n}-3}{2}$ | D. | $\frac{{3}^{n+1}-3}{2}$ |
19.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“?x0∈R,f(x0)=f(-x0)”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |