题目内容
(Ⅰ)证明:面AA1C1C⊥平面BB1C1C及求AB1与平面AA1C1C所成角的正切值;
(Ⅱ)在平面AA1B1B内找一点P,使三棱锥P-BB1C为正三棱锥,并求此时
| VP-AA1C1C |
| VP-BB1C1C |
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的性质
专题:综合题
分析:(1)根据条件和线面垂直的判定定理得:AC⊥面BB1C1C,再由面面垂直的判断定理证明出面BB1C1C⊥面AA1C1C,再根据条件和线面垂直、面面垂直分别做出二面角A-BB1-C的平面角、AB1与面AA1C1C所成的线面角,并分别证明和计算求解;
(2)根据正三棱锥的定义和正三角形重心的性质,找到点P,再由条件求出PP1和点E到平面AA1C1C的距离,代入三棱锥的体积公式求出两个棱锥的体积比值.
(2)根据正三棱锥的定义和正三角形重心的性质,找到点P,再由条件求出PP1和点E到平面AA1C1C的距离,代入三棱锥的体积公式求出两个棱锥的体积比值.
解答:
解:(Ⅰ)∵面BB1C1C⊥面ABC,且面BB1C1C∩面ABC=BC,AC⊥BC,
∴AC⊥面BB1C1C,
则面BB1C1C⊥面AA1C1C (3分)
取BB1中点E,连接CE,AE,
在△CBB1中,BB1=CB=2,∠CBB1=60°
∴△CBB1是正三角形,∴CE⊥BB1,
又∵AC⊥面BB1C1C,且BB1?面BB1C1C,
∴BB1⊥AE,即∠CEA即为二面角A-BB1-C的平面角为30°,
∵AC⊥面BB1C1C,
∴AC⊥CE,在Rt△ECA中,CE=
,
∴AC=CE•tan30°=1,取C1C中点D,连接AD,B1D,
∵△CBB1是正三角形,且BB1=CB=2,∴B1D⊥C1C,
∵AC⊥面BB1C1C,∴AC⊥面B1D,
∵C1C∩AC=C,∴B1D⊥面AA1C1C,
即∠B1DA即AB1与面AA1C1C所成的线面角,
则tan∠DAB1=
=
,…(8分)
(Ⅱ)在CE上取点P1,使
=
,
∵CE是△BB1C的中线,∴P1是△BB1C的重心,
在△ECA中,过P1作P1P∥CA交AE于P,
∵AC⊥面BB1C1C,P1P∥CA,
∴PP1⊥面CBB1,即P点在平面CBB1上的射影是△BCB1的中心,该点即为所求,
且
=
,∴PP1=
,
∵B1D∥CE,且B1D=CE=
,
∴
=
=2.…(12分)
∴AC⊥面BB1C1C,
则面BB1C1C⊥面AA1C1C (3分)
取BB1中点E,连接CE,AE,
在△CBB1中,BB1=CB=2,∠CBB1=60°
∴△CBB1是正三角形,∴CE⊥BB1,
又∵AC⊥面BB1C1C,且BB1?面BB1C1C,
∴BB1⊥AE,即∠CEA即为二面角A-BB1-C的平面角为30°,
∵AC⊥面BB1C1C,
∴AC⊥CE,在Rt△ECA中,CE=
| 3 |
∴AC=CE•tan30°=1,取C1C中点D,连接AD,B1D,
∵△CBB1是正三角形,且BB1=CB=2,∴B1D⊥C1C,
∵AC⊥面BB1C1C,∴AC⊥面B1D,
∵C1C∩AC=C,∴B1D⊥面AA1C1C,
即∠B1DA即AB1与面AA1C1C所成的线面角,
则tan∠DAB1=
| B1D |
| AD |
| ||
| 2 |
(Ⅱ)在CE上取点P1,使
| CP1 |
| P1E |
| 2 |
| 1 |
∵CE是△BB1C的中线,∴P1是△BB1C的重心,
在△ECA中,过P1作P1P∥CA交AE于P,
∵AC⊥面BB1C1C,P1P∥CA,
∴PP1⊥面CBB1,即P点在平面CBB1上的射影是△BCB1的中心,该点即为所求,
且
| PP1 |
| AC |
| 1 |
| 3 |
| 1 |
| 3 |
∵B1D∥CE,且B1D=CE=
| 3 |
∴
| VP-AA1C1C |
| VP-BB1C1C |
| ||||||
|
点评:本题考查了线面垂直的判定定理、面面垂直的判断定理和性质定理的综合应用,二面角、线面角的求解构成,以及三棱锥的体积公式的应用,难度很大.
练习册系列答案
相关题目