题目内容
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行
(Ⅰ)求a,b的值
(Ⅱ)求函数f(x)的极值.
(Ⅰ)求a,b的值
(Ⅱ)求函数f(x)的极值.
考点:利用导数研究函数的极值,利用导数研究曲线上某点切线方程
专题:综合题,导数的概念及应用
分析:(Ⅰ)对函数进行求导,由题意可得f′(2)=0,f′(1)=-3,代入可求出a、b的值;
(Ⅱ)求出函数的单调区间,可得函数的极大值为f(0)=c,极小值为f(2)=c-4.
(Ⅱ)求出函数的单调区间,可得函数的极大值为f(0)=c,极小值为f(2)=c-4.
解答:
解:(Ⅰ)对函数求导可得f′(x)=3x2+6ax+3b,
因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0
即4a+b+4=0①
又因为图象在x=1处的切线与直线6x+2y+5=0平行
所以f′(1)=3+6a+3b=-3
即2a+b+2=0②
联立①②可得a=-1,b=0
(Ⅱ)f′(x)=3x2-6x=3x(x-2)
当f′(x)>0时,x<0或x>2;当f′(x)<0时,0<x<2
所以函数的单调增区间是 (-∞,0)和(2,+∞);函数的单调减区间是(0,2)
因此求出函数的极大值为f(0)=c,极小值为f(2)=c-4.
因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0
即4a+b+4=0①
又因为图象在x=1处的切线与直线6x+2y+5=0平行
所以f′(1)=3+6a+3b=-3
即2a+b+2=0②
联立①②可得a=-1,b=0
(Ⅱ)f′(x)=3x2-6x=3x(x-2)
当f′(x)>0时,x<0或x>2;当f′(x)<0时,0<x<2
所以函数的单调增区间是 (-∞,0)和(2,+∞);函数的单调减区间是(0,2)
因此求出函数的极大值为f(0)=c,极小值为f(2)=c-4.
点评:本题主要考查函数在某点取得极值的条件和导数的几何意义,考查了利用导数研究函数的极值,求函数极值的步骤是:先求导函数,令导函数等于0,求出方程的根,确定函数在方程的根左右的单调性,根据极值的定义,确定极值点和极值.
练习册系列答案
相关题目